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Abstract
The development of estimation and forecasting procedures using empirically realistic

continuous-time stochastic volatility models is severely hampered by the lack of closed-form

expressions for the transition densities of the observed returns. In response to this, Andersen,

Bollerslev, Diebold and Labys (2002) have recently advocated modeling and forecasting the

(latent) integrated volatility of primary import from a pricing perspective based on simple reduced

form time series models for the observable realized volatilities, constructed from the summation of

high-frequency squared returns. Building on the eigenfunction stochastic volatility class of models

introduced by Meddahi (2001), we present analytical expressions for the loss in forecast eÆciency

associated with this easy-to-implement procedure as a function of the sampling frequency of the

returns underlying the realized volatility measures. On numerically quantifying this eÆciency

loss for such popular continuous-time models as GARCH, multi-factor aÆne, and log-normal

di�usions, we �nd that the realized volatility reduced form procedures perform remarkably well in

comparison to the optimal (non-feasible) forecasts conditional on the full sample path realization

of the latent instantaneous volatility process.
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1 Introduction

Continuous-time stochastic volatility models �gure prominently in modern asset

pricing theories. At the same time, empirical analysis of such models are generally

complicated by intractable expressions for the transition density of the observed

discrete-time returns. Even though a burst of research activity over the last few years

has allowed for important new advances (see, e.g., the surveys in A��t-Sahalia, Hansen

and Scheinkman, 2002, Gallant and Tauchen, 2002, and Johannes and Polson, 2002),

the discrete-time (G)ARCH class of models remains the workhorse for modeling and

forecasting time-varying volatility in situations of practical import. Recent advances

in econometric methodology and richer data sources hold the promise of a paradigm

shift.

In particular, from the perspectives of asset pricing and risk management,

interests typically center on (forecasts for) the integrated volatility as opposed to

the point-in-time volatility which often serves as a (latent) state variable in the

formulation of continuous-time models. Moreover, from a statistical perspective,

the integrated volatility provides a direct measure of the discrete-time return

variability appropriately de�ned (see, e.g., the discussion in Andersen, Bollerslev,

Diebold and Labys, 2002, henceforth ABDL, and Andersen, Bollerslev and Diebold,

2002). These observations, along with the increased availability of continuously

recorded intraday prices (ultra high-frequency data in the terminology of Engle,

2000), have spurred much novel research into the measurement, modeling, and

forecasting of integrated volatility based on discretely-sampled realized volatilities

constructed from the summation of �nely sampled squared high-frequency returns

(e.g., Andersen and Bollerslev, 1998, ABDL, 2001, Barndor�-Nielsen and Shephard,

2001, 2002a,b, Comte and Renault, 1998, and Meddahi, 2002a).

The empirical results of ABDL (2002) are particularly intriguing, suggesting that

relatively simply discrete-time ARMA based forecasts for the realized volatilities

compare admirably to forecasts based on the standard set of volatility models

employed in the academic literature and most commonly used by practitioners.

Of course, from a formal statistical perspective these easy-to-compute reduced form

time series forecasts for the observed realized volatilities invariably entail a loss in

eÆciency relative to the optimal, but generally infeasible, forecasts for the latent

integrated volatilities based on the true underlying continuous-time model.
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We provide explicit analytical expressions for the expected future integrated

volatility for the most popular stochastic volatility di�usion models employed in

the literature, including GARCH, multi-factor aÆne, and log-normal di�usions.

We obtain these results by exploiting the general eigenfunction stochastic volatility

model class introduced by Meddahi (2001). By conditioning the expectations on the

full sample path realization of the latent volatility process1 as well as the coarser

information set consisting of only the lagged realized volatilities constructed from

the high-frequency returns over �xed-length time intervals, our results allow for a

direct assessment of the tradeo� between modeling complexity, sampling frequency,

and forecast accuracy. As such, it also directly quanti�es the loss associated with

simple feasible procedures relative to the optimal, but infeasible ones.2

Following Andersen and Bollerslev (1998) and ABDL (2002) among others,

we focus our forecast comparisons on the value of the coeÆcient of multiple

correlation in the ex-post regressions of the (latent) integrated volatility of interests

on the forecasts obtained from the di�erent volatility modeling procedures.3 On

numerically quantifying this loss for empirically realistic sampling frequencies for

several speci�c models recently reported in the literature, we �nd that the simple

discrete-time autoregressive models for the realized volatilities perform remarkably

well compared to the fully eÆcient (non-feasible) continuous-time model forecasts

conditional on the full sample-path realization of the latent volatility process.

Hence, our results lend additional theoretical support to the use of simple empirical

reduced form modeling and forecasting procedures based on the observable realized

volatilities in situations of practical import.

The plan for the rest of the paper is as follows. The next section formally de�nes

the notions of integrated and realized volatility within the class of continuous-time

stochastic volatility models. We also brie
y review the arguments for focusing on

forecasts of integrated volatility based on projections involving realized volatility.

1Throughout the paper, we identify the path realization of the volatility process and the path
realization of the state variable driving the volatility process. We will be more speci�c when the
di�erence between these two paths is important for forecasting purposes.

2This type of analysis parallels previous studies related to the predictability of mean asset
returns; see, e.g. the discussion in Campbell, Garcia, Meddahi and Sentana (2002).

3No universally acceptable loss function exists for the evaluation of non-linear model forecasts;
see, e.g., the discussion in Andersen, Bollerslev and Lange (1999) and Christo�ersen and Diebold
(2000). The particular loss function used here is directly inspired by the earlier contributions of
Mincer and Zarnowitz (1969), and we will refer to the corresponding regression as such; see also
the discussion in Chong and Hendry (1986).
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Section 3 introduces the eigenfunction stochastic volatility class of models underlying

our theoretical derivations, and also sets out the three speci�c models that form the

basis for our numerical calculations. Section 4 presents analytical expressions for

the optimal (non-feasible) one- and multi-step-ahead forecasts for the integrated

volatility conditional on the full sample path realization of the latent spot volatility

process, along with the less eÆcient (still non-feasible) forecasts conditional on

the coarser information set consisting of \only" the lagged integrated volatilities.

Section 5 in turn presents the (feasible) forecasts for the future integrated volatilities

conditional on the past observable realized volatilities. This section also quanti�es

the corresponding loss in eÆciency for each of the three illustrative candidate models

as a function of the sampling frequency of the returns used in the construction of

the realized volatilities. Section 6 concludes. All proofs are relegated to a technical

Appendix.

2 Integrated and Realized Volatility

We focus on a single asset traded in a liquid �nancial market. Assuming the sample-

path of the corresponding logarithmic price process, fpt; 0 � tg, to be continuous,4

the class of continuous-time stochastic volatility models traditionally employed in

the �nance literature is conveniently expressed in terms of the following generic

stochastic di�erential equation (sde),

dpt = �tdt+ �tdWt (2.1)

where Wt denotes a standard Brownian motion, and the drift term �t is (locally)

predictable and of �nite variation.5 The point-in-time, or spot, volatility process

f�t; 0 � tg measures the instantaneous strength of the price variability expressed

per unit-of-time.

Following standard practice we assume that the sample path of the �t process is

also continuous. Generally, �t and Wt may be contemporaneously correlated so that

a so-called leverage style e�ect is allowed. However, the (asymptotic) distributional

result discussed in this section is only known to be true under the assumption that

4The discussion in this section explicitly rules out discontinuities in the price process. However,
our new theoretical results based on the eigenfunction stochastic volatility class of models could
fairly easily be extended to allow for jumps. We brie
y allude to this possibility in Section 3.

5The drift, �t, may generally depend explicitly on both pt and �t. However, we suppressed all
the arguments for notational simplicity.
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d�t and dWt are uncorrelated (no leverage e�ect). Likewise, the results concerning

realized volatility in Section 5 precludes leverage e�ects. In contrast, the new

theoretical results in Sections 3 and 4 explicitly allow for a non-zero (instantaneous)

correlation, and we conjecture that the key results on realized volatility in Section

5 will be (approximately) valid in this case as well. Likewise, to facilitate the

exposition, we explicitly exclude jump processes although many of the results remain

valid for empirically relevant jump speci�cations.

The sde in equation (2.1) greatly facilitates arbitrage-based pricing arguments.

However, as emphasized by Andersen, Bollerslev and Diebold (2002), practical

return calculations and volatility measurements are invariably restricted to discrete

time intervals. In particular, focusing on the unit time interval, the one-period

continuously compounded return corresponding to (2.1) is formally given by,

rt � pt � pt�1 =

Z t

t�1

�udu+

Z t

t�1

�udWu: (2.2)

Hence, with no leverage e�ect and conditional on the sample-path realizations of

the drift and volatility processes, f�u; t � 1 � u � tg and f�u; t � 1 � u � tg, the
one-period returns will be Gaussian with conditional mean equal to the �rst integral

on the right-hand-side of equation (2.2), while the conditional variance equals the

integrated volatility,

IVt �
Z t

t�1

�2udu: (2.3)

The integrated volatility therefore a�ords a natural measure of the (ex-post)

return variability, as recently highlighted in independent work by Andersen and

Bollerslev (1998), Comte and Renault (1998) and Barndor�-Nielsen and Shephard

(2001). The integrated volatility also plays a key role in the stochastic volatility

option pricing literature. In particular, ignoring the variation in the conditional

mean, Hull and White (1987) show that option prices are uniquely determined by

the expected future integrated volatility (see also Garcia, Lewis and Renault, 2001).

Of course, integrated volatility is not directly observable. This has spurred the

development of several new statistical procedures for modeling and forecasting the

(latent) integrated volatility based on speci�c parametric models within the general

di�usion class of models in equation (2.1) (see, e.g., Gallant, Hsu and Tauchen,

1999, and Barndor�-Nielsen and Shephard, 2001, and the references therein). While
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these procedures allow for the construction of asymptotically optimal forecasts under

appropriate conditions, they are generally not robust to misspeci�cations of the

underlying continuous-time model and also quite complicated to implement.

Alternatively, consider the so-called realized volatility de�ned by the summation

of intra-period squared returns,

RVt(h) �
1=hX
i=1

r
(h)2
t�1+ih; (2.4)

where the h-period return is given by r
(h)
t = pt�pt�h; and 1/h is a positive integer. By

the theory of quadratic variation,RVt(h) converges uniformly in probability to IVt as

h ! 0, thus allowing for increasingly more accurate non-parametric measurements

of integrated volatility as the sampling frequency of the underlying intra-period

returns increases.

If we further assume that the realized and integrated volatility measures

are square integrable, the asymptotic unbiasedness of RVt(h) for IVt, implies

that forecasts for IVt+j, j � 1, based on the projection of RVt+j(h) on any

time t information set, will also be (asymptotically) unbiased and optimal in a

Mean-Square-Error (MSE) sense relative to that particular information set.6 In

particular, restricting the information set to the lagged realized volatilities only, as

proposed by ABDL (2002), conveniently circumvents the complications associated

with the use of latent variable procedures in the construction of the integrated

volatility forecasts. Of course, doing so also entails a loss in forecast eÆciency

relative to the optimal (non-feasible) forecasts for IVt+j conditional on the full

sample path realization of the instantaneous price and (latent) spot volatility

processes. Quite remarkably, however, as we show below, this loss in eÆciency

is typically fairly small. We next turn to a discussion of the eigenfunction stochastic

volatility class of models used in our formal derivation of this important practical

result.

6This result holds generally subject to a uniform integrability condition ensuring convergence
in expectation of the uniformly consistent realized volatility measure. As such, it includes cases
in which the continuous sample path assumption for spot volatility is violated; see, e.g., the
discussion in Andersen, Bollerslev and Diebold (2002) and Barndor�-Nielsen and Shephard (2002b).
Ho�man-J�rgensen (1994), sections 3.22-3.25, provides a formal discussion of the necessary uniform
integrability conditions on the underlying price process to ensure convergence in expectation. See
also Billingsley (1986), Exercise 21.21, for the identical result.
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3 Eigenfunction Stochastic Volatility Models

This section reviews the main properties of the Eigenfunction Stochastic Volatility

(ESV) models introduced in Meddahi (2001) and provides a discussion of the speci�c

parametric models considered in our numerical calculations. The ESV class of

models includes most continuous-time stochastic volatility models analyzed in the

existing literature. Meanwhile, the formulation in terms of orthogonal eigenfunctions

provides a particular convenient and elegant framework for the derivation of explicit

analytical expressions for volatility forecasts.

3.1 General Theory

The generic stochastic volatility model in equation (2.1) is only restricted by the

requirement that the point-in-time, or spot, volatility process, �t, be non-negative.

Most popular stochastic volatility models in the existing literature are based on the

additional assumptions that the volatility process is driven by a single (latent) state

variable. In the context of the ESV class of models, the corresponding one-factor

representation takes the form,

dpt = �tdt+ �t [
p
1� �2dW (1)

t + �dW (2)
t ]; (3.1)

where W
(1)
t and W

(2)
t denote two independent standard Brownian Motions, and the

instantaneous volatility is related to the latent state variable,

dft = �(ft)dt+ �(ft)dW
(2)
t ; (3.2)

by the functional relationship,

�2t =

pX
i=0

aiPi(ft); (3.3)

where the integer p may be in�nite, the ai coeÆcients are real numbers, the Pi(ft)'s

denote the eigenfunctions of the in�nitesimal generator, A, associated with ft,

and the normalizations P0(ft) = 1 and V ar[Pi(ft)] = 1 for i 6= 0 are imposed

for notational simplicity.7 Moreover, the stationary process for fftg is assumed

7The in�nitesimal generator, A, associated with ft is formally de�ned by

A�(ft) � �(ft)�
0(ft) +

�2(ft)

2
�

00

(ft);

6



to be time reversible, and therefore the set of eigenvalues of the in�nitesimal

generator associated with ft is real; see Meddahi (2001) for further discussion of

these additional regularity conditions for the general ESV class of models.

The expression for �2t in equation (3.3) may appear somewhat arbitrary.

Importantly, however, any square-integrable function g(ft) can be written as a linear

combination of the eigenfunctions associated with ft, i.e.,

g(ft) =
1X
i=0

aiPi(ft); (3.4)

where ai = E[g(ft)Pi(ft)] and
P1

i=0 a
2
i = E[g(ft)

2] < 1, so that g(ft) is the limit

in mean-square of
Pp

i=0 aiPi(ft) for p going to in�nity. As such, the ESV structure

encompasses the popular GARCH di�usion model (Nelson, 1990) corresponding to

�2t = ft and ft = k[� � ft]dt+ �ftdW
(2)
t , as well as the log-normal model (Hull and

White, 1987; Wiggins, 1987) obtained by setting �2t = exp(ft) and ft = k[��ft]dt+
�dW

(2)
t , and the one-factor square-root model of Heston (1993) de�ned by �2t = ft

and ft = k[� � ft]dt+ �
p
ftdW

(2)
t .

The power of the ESV representations of these and other continuous time

stochastic volatility models essentially stems from the following two properties.

First, the eigenfunctions associated with di�erent eigenvalues are orthogonal and

any nonconstant eigenfunction is centered at zero (for i; j > 0 and i 6= j):

E[Pi(ft)Pj(ft)] = 0 and E[Pi(ft)] = 0: (3.5)

These features, of course, underlie the result noted after equation (3.4) thatP1

i=0 a
2
i = E[g(ft)

2]. Second, the eigenfunctions are �rst order autoregressive

processes (in general heteroskedastic):

8l > 0; E[Pi(ft+l) j f� ; � � t] = exp(��il)Pi(ft): (3.6)

Given the structure of the ESV model and the Markovian nature of the joint process

(pt; ft), conditional expectations of any transformation of this variable, including

the variance, therefore only depend on the expectations of the eigenfunctions. The

for any square-integrable and twice di�erentiable function, �(ft). The corresponding
eigenfunctions, Pi(ft), and eigenvalues, (��i), satisfy

APi(ft) = ��iPi(ft):

For a more detailed discussion of the properties of in�nitesimal generators see e.g., Hansen and
Scheinkman (1995) and A��t-Sahalia, Hansen and Scheinkman (2002).
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orthogonality of the eigenfunctions coupled with the simple �rst-order autoregressive

dynamics in turn render such calculations straightforward.

The ESV representations discussed above are based on a single (latent) state

variable. Meanwhile, several recent studies, including Alizadeh, Brandt and Diebold

(2002), Bollerslev and Zhou (2002), Engle and Lee (1999), Gallant, Hsu and Tauchen

(1999), and Harvey, Ruiz and Shephard (1994) among others, have argued for

the empirical relevance of allowing for multiple volatility factors. Without loss of

generality, consider the two-factor case. Following Meddahi (2001), let f1;t and f2;t

denote two independent stochastic processes characterized by,

dfj;t = �j(fj;t)dt+ �j(fj;t)dW
(j+1)
t ; j = 1; 2; (3.7)

with the eigenfunctions and eigenvalues of the corresponding in�nitesimal generator

denoted by Pj;i(fj;t) and (��j;i), j = 1; 2, respectively. The variance process for the

general two-factor ESV model is then de�ned by

�2t =
X

0�i;j�p

ai;jP1;i(f1;t)P2;j(f2;t); (3.8)

where in analogy to the one-factor case, the ai;j coeÆcients are square summable.

The properties of the eigenfunctions in (3.5) and (3.6) similarly hold true for the

functions P
(2)
i;j (ft) � P1;i(f1;t)P2;j(f2;t), where ft � (f1;t; f2;t)

>. Hence, the P
(2)
i;j (ft)'s

are simply the eigenfunctions associated with the bivariate state variable (f1;t; f2;t)
>,

and the same calculations outlined above goes through in this case.8

3.2 Speci�c Examples

The numerical analysis presented in subsequent sections is based on three speci�c

models, namely a GARCH di�usion model, a two-factor aÆne model, and a

log-normal di�usion. Meddahi (2001) shows how each of these models may

be represented as an ESV model by explicitly solving for the corresponding

eigenfunctions. The following subsections provide a brief summary of these results,

along with the actual parameter values used in the numerical calculations.

8See Chen, Hansen and Scheinkman (2000) for a general approach to eigenfunction modeling
in the multivariate case.
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3.2.1 Model M1 - GARCH Di�usion

The instantaneous volatility in the GARCH di�usion model is de�ned by the process,

d�2t = k(� � �2t )dt+ ��2t dW
(2)
t :

This model was �rst introduced by Wong (1964) and later popularized by Nelson

(1990). The model is readily expressed as an ESV model by de�ning the state

variable,

dft = k(� � ft)dt+ �ftdW
(2)
t ;

and the function g(x) = x. Assuming that the variance of �2t is �nite, it is possible

to show that

�2t = a0 + a1P1(ft);

where a0 = �, a1 = �
p
 =(1�  ),  = �2=2k, and the �rst and only eigenfunction

for ft is aÆne,

P1(x) =

p
1�  

�
p
 

(x� �):

As discussed above, this representation of the process greatly facilities any expected

variance and/or volatility forecast calculations. Note also that the second moment

of the variance �2t is assured to be �nite for  less than one. In the numerical

calculations reported on here we rely on the parameters from Andersen and

Bollerslev (1998) as implied from the (weak) daily GARCH(1,1) model estimates

for the DM/dollar from 1987 through 1992 using the temporal aggregation results

of Drost and Nijman (1993) and Drost and Werker (1996). In particular, k =

0:035; � = 0:636; and  = 0:296. These parameter values were also used in the

studies by Andersen, Bollerslev and Lange (1999) and Andreou and Ghysels (2002).

3.2.2 Model M2 - Two-Factor AÆne

The instantaneous variance in the two-factor aÆne model is given by,

�2t = �21;t + �22;t; d�2j;t = kj(�j � �2j;t)dt+ �j�j;tdW
(j+1)
t ; j = 1; 2:

Following Meddahi (2001), this model may be cast in the form of an ESV model by

de�ning the state variables,

dfj;t = kj(�j + 1� fj;t)dt+
p
2kj
p
fj;tdW

(j+1)
t ; j = 1; 2;
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where �j = (2kj�j=�
2
j ) � 1, and the fj;t's are related to the �j;t's by the functional

relationship,

fj;t =
2kj
�2j
�2j;t; j = 1; 2:

In particular, it is possible to show that the eigenfunctions associated with fj;t

are given by the Laguerre polynomials L
(�j)
i (fj;t), i = 0; 1; :::, with corresponding

eigenvalues �j;i = kji. Moreover,

�2j;t = ~aj;0L
(�j )
0 (fj;t) + ~aj;1L

(�j )
1 (fj;t)

with ~aj;0 = �j and ~aj;1 = �p�j�j=
p
2kj, so that by equation 3.8),

�2t = a0;0 + a1;0L
(�1)
1 (f1;t) + a0;1L

(�2)
1 (f2;t);

where a0;0 = ~a1;0 + ~a2;0, a1;0 = ~a1;1 and a0;1 = ~a2;1. The actual numerical results for

the two-factor model are based on the parameter estimates reported in Bollerslev

and Zhou (2002) obtained by matching the sample moments of the daily realized

volatilities constructed from high-frequency �ve-minute DM/dollar returns spanning

1986 through 1996 to the corresponding population moments for the integrated

volatility. The resulting values are, k1 = 0:5708; �1 = 0:3257; �1 = 0:2286; k2 =

0:0757; �2 = 0:1786; �2 = 0:1096, implying the existence of a very volatile �rst

factor, along with a much more slowly mean reverting second factor.

3.2.3 Model M3 - Log-Normal Di�usion

Our last numerical example is based on the log-normal di�usion model,

d log(�2t ) = k[� � log(�2t )]dt+ �dW
(2)
t :

Again, following Meddahi (2001), this model may be expressed in the form of an

ESV model by de�ning the state variable,

dft = �kftdt+
p
2k dW

(2)
t ;

related to �t by the functional relationship,

ft =

p
2k

�
(log �2t � �):
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The eigenfunctions associated with this Ornstein-Uhlenbeck process for ft are given

by the usual Hermite polynomialsHi(ft), i = 0; 1; :::, with corresponding eigenvalues

�i = ki. Hence,

�2t =
1X
i=0

aiHi(ft);

where the ai coeÆcients take the form,

ai = exp(� +
�2

4k
)
(�=

p
2k)ip
i!

:

Our numerical illustrations for this model rely on the EMM-based parameter

estimates for the daily S&P500 returns spanning 1953 through 1996 reported in

Andersen, Benzoni and Lund (2002), where we restrict the estimated correlation

between dW
(1)
t and dW

(2)
t related to the leverage e�ect to be zero. In particular,

k = 0:0136; � = �0:8382; � = 0:1148. Finally, the summation in (3.3) is truncated

at p = 100.

4 Ideal Integrated Volatility Forecasts

This section provides analytic expressions for the basic dependency structure of

integrated volatility across the full range of ESV di�usion models. Building on

these �ndings, we go on to characterize the extent of the predictability of integrated

volatility for any member of this important class of asset price processes. The

predictability is obviously dependent on the assumed information set. We present

results ranging from the ideal case of knowing the current (latent)volatility state,

through knowing the spot volatility, to observing the past sequence of integrated

volatility only. All such information sets are unattainable in practice, as they

contain variables that are not observed, but rather must be estimated or extracted

from discrete return data. Nonetheless, they serve as important benchmarks that

establish the maximal predictability and reveal, step-by-step, how much forecast

power is lost as we condition on successively less informative, but empirically more

readily approximated, variables. The results based on conditioning the forecasts on

past integrated volatility sets the stage for the analysis of the feasible integrated

volatility forecasts based on realized volatility measures extracted directly from

observed high-frequency, intraday data in the following section.
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4.1 Optimal One-Period-Ahead Forecasts

Our �rst proposition characterizes the basic �rst and second moment properties

of the spot and integrated volatility processes within the ESV di�usion class (the

proofs of all the propositions are given in the technical Appendix). The results are

all new at this level of generality, but some expressions are clearly related to the

abstract characterization of the second moment properties of integrated volatility

in Barndor�-Nielsen and Shephard (2002a). Moreover, these authors also provide

some concrete results for special cases of the ESV model as well as the non-Gaussian

Ornstein-Uhlenbeck model.

Proposition 4.1 For any ESV di�usion model, as de�ned in Section 3.1 (with

potential non-zero drift or leverage e�ects), and any integer n � 1, we have

E[�2t ] = E[IVt+n] = a0; (4.1)

E[�2t+n j p� ; f� ; � � t] = a0 +

pX
i=1

ai exp(��in)Pi(ft); (4.2)

E[IVt+n j p� ; f� ; � � t] = a0 +

pX
i=1

ai exp(��i(n� 1))
[1� exp(��i)]

�i
Pi(ft); (4.3)

V ar[�2t ] =

pX
i=1

a2i ; (4.4)

V ar[IVt] = 2

pX
i=1

a2i
�2i
[exp(��i) + �i � 1]; (4.5)

Cov(IVt+n; �
2
t ) =

pX
i=1

a2i exp(��i(n� 1))
[1� exp(��i)]

�i
; (4.6)

Cov(IVt+n; IVt) =

pX
i=1

a2i exp(��i(n� 1))
[1� exp(��i)]

2

�2i
; (4.7)

Cov(�2t+n; �
2
t ) =

pX
i=1

a2i exp(��in) (4.8)
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One set of novel implications is given by the following corollary to Proposition 4.1.

It provides rather intuitive, yet useful, ranking of the second moment expressions

for the di�erent latent volatility notions.

Proposition 4.2 Under the assumptions of Proposition 4.1, and for any integer

n � 1, we have

Cov(�2t+n; �
2
t ) � Cov(IVt+n; IVt) � Cov(IVt+n; �

2
t ) � V ar[IVt] � V ar[�2t ]: (4.9)

The inequalities are most readily comprehended by recalling the timing between spot

and integrated volatility and recognizing that integrated volatility is a smoothed

version of the spot volatility process. The �rst inequality, for example, re
ects the

fact that the spot volatilities are separated by n periods whereas the gap between

the intervals over which the integrated volatilities, IVt+n and IVt, are measured is

only n � 1 periods. The second inequality suggests that the spot volatility at the

interval end is more informative about future integrated volatility than the smoothed

(average) spot volatility over the corresponding interval. Such a conclusion appears

natural in the single eigenfunction case, given the Markov structure of ESV models,

but is less obvious for the multiple eigenfunction case where aÆne functions of

spot volatility cannot provide a suÆcient statistic for the volatility state vector, ft.

The �nal inequalities are hardly surprising, but have important implications. The

variability of either volatility measure exceeds the covariability measures and the

smoothed integrated volatility measure is less variable than the spot volatility. The

latter �nding implies that the comparatively high covariance between spot volatility

and future integrated volatility may be due to (excess) variability of spot volatility

rather than superior correlation between spot and future (integrated) volatility.

Hence, as discussed extensively below, it is not clear in general whether conditioning

on the spot or the integrated volatility will allow for the more eÆcient forecast.

We are now in position to assess the optimal integrated volatility forecasts

generated by di�erent information sets. We adopt the standard expected quadratic

loss function, implying that optimal forecasts equal the conditional expectation of

integrated volatility given the available information. The universally best forecast is

based on the full history of the log-price and volatility path, denoted by the sigma

algebra, �(p� ; f� ; � � t). As discussed above, given the Markov structure of the

ESV models, knowledge of the state vector, ft, is suÆcient for the construction

of the optimal predictor. The coeÆcient of multiple correlation, or R2, from the
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Mincer-Zarnowitz type regression of future integrated volatility on the corresponding

(conditional expectation) forecasts (and a constant) serves as a popular and useful

summary measure of forecast performance. Moreover, it is consistent with the

emphasis on quadratic loss. For notational convenience, we focus our analysis on the

one-period-ahead integrated volatility, IVt+1, but similar results are readily available

for the n-period-ahead measure, IVt+n.

Proposition 4.1 and the orthogonality of the eigenfunctions, indicated in (3.5),

imply that the \explained variation" from regressing IVt+1 onto E[IVt+1 j p� ; f� ; � �
t] (and a constant), denoted R2(IVt+1; Best), is given by

R2(IVt+1; Best) =
1

V ar[IVt]

pX
i=1

a2i
[1� exp(��i)]

2

�2i
; (4.10)

with V ar[IVt] determined by (4.5).

Alternatively, consider forecasts based on the current spot volatility. In

one-factor ESV models, there is no di�erence between the conditional expectation

of integrated volatility given either spot volatility or the volatility state vector, so

the two forecasts coincide. In multi-factor models, however, the spot volatility

is not a suÆcient statistic for the volatility state vector, with the latter being

more informative. Moreover, the process (pt; �t) is not Markovian, and, hence, the

associated optimal forecast - the conditional expectation of IVt+1 given �(p� ; �
2
� ; � �

t) - depends in general on the entire path of �2t and is not available in closed form.

Consequently, we next consider a simple forecast that depends linearly on �2t .

Obviously, the best aÆne forecast of IVt+1 is given by the corresponding (population)

regression coeÆcients on �2t and a constant.

Using (4.6), it follows readily that the R2 of the corresponding Mincer-Zarnowitz

regression, denoted R2(IVt+1; �
2
t ), may be expressed as,

R2(IVt+1; �
2
t ) =

1

V ar[IVt]V ar[�2t ]

 
pX

i=1

a2i
[1� exp(��i)]

�i

!2

(4.11)

where V ar[IVt] and V ar[�
2
t ] are given by (4.5) and (4.4). In the univariate factor

case, if the variance is solely a function of a single (non-constant) eigenfunction,

this forecast still coincides with the \best". However, when the variance depends

on multiple eigenfunctions, the forecast will di�er from the \best", even in the case

of a single factor. In the speci�c examples discussed in Section 3.2 above, we have
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one case (the GARCH di�usion) where the forecasts coincide (single factor, one

eigenfunction), one where they di�er in a univariate factor model (the lognormal

di�usion, where the variance depends on multiple eigenfunctions), and one where

the spot volatility forecast is necessarily inferior to the \best"(the two-factors aÆne

di�usion).

Forecasts based on integrated volatility are of particular interest as they, in

practice, may be approximated by the corresponding realized volatility obtained

from high-frequency data. Current (and past) integrated volatility will generally not

provide a suÆcient statistic for the volatility state vector so the optimal forecasts are

not available in closed form and we again restrict attention to forecasts generated

by aÆne functions of the integrated volatility. In particular, on using (4.7) it

follows that the R2 from the regression of IVt+1 on IVt and a constant, denoted

R2(IVt+1; IVt), takes the form

R2(IVt+1; IVt) =

 
pX

i=1

a2i [1� exp(��i)]
2=�2i

!2

V ar[IVt]2
(4.12)

where V ar[IVt] is again given by (4.5).

Obviously, the optimal forecast for the one-period integrated volatility will, by

construction dominate in terms of the population R2 from the associated Mincer-

Zarnowitz regressions. More interesting is the relative performance of the forecasts

in (4.11) and (4.12). Proposition 4.2 allows us to readily explore this issue.

Proposition 4.3 Under the assumptions of Proposition 4.1, and if there is a unique

eigenfunction in (3.3), we have

R2(IVt+1; IVt) � R2(IVt+1; �
2
t ): (4.13)

Otherwise, no general ranking of R2(IVt+1; IVt) relative to R2(IVt+1; �
2
t ) is feasible.

The proof (in the appendix) provides a direct assessment of the model features that

account for the relative performance of these forecasts. In summary, low persistence

of the eigenfunctions hurts the relative performance of integrated volatility based

forecasts, whereas the main culprit behind poor performance of spot volatility

based predictors is a large discrepancy in persistence across the eigenfunctions (and

associated high variability of the spot volatility process). Interestingly, in spite of the
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higher covariance between the spot volatility and the future (integrated) volatility, it

is generally not the case that the corresponding forecasts dominate those generated

by conditioning on the integrated volatility. In fact, this is only assured when

there is a single eigenfunction - in which case the spot volatility based predictor

coincides with the optimal one.9 In this situation, the integrated volatility forecasts

should ideally be based on (an estimate of) current spot volatility or (an estimate

of) a current integrated volatility measure covering as short an intraday interval

as possible. However, practical diÆculties in obtaining precise intraday-horizon

volatility estimates limit the applicability of this insight.

Indeed, from a practical perspective the more relevant question is how much

predictive power is lost for the di�erent forecasts and how one may alleviate the

loss in forecast accuracy if only historical integrated volatility based predictors are

feasible. We return to the �rst question in our numerical comparisons in Section 4.4.

One approach for addressing the second question involves the inclusion of additional

(lagged) explanatory variables, as discussed formally in the following section.

4.2 Forecasts Based on Multiple Explanatory Variables

Since the optimal forecast of IVt+1 conditional on the history of spot volatility

generally depends on the entire volatility path, it is natural to extend the expression

for the best aÆne forecast of IVt+1 given �
2
t to include a �xed, �nite number of lagged

spot volatilities (and a constant) as regressors. Similarly, it is relevant to consider

the best aÆne forecast of IVt+1 given IVt and its lagged values.

For this purpose, it is convenient �rst to introduce some notation. For a

covariance-stationary random variable (y� ; zt) and an integer l, we let C(y� ; zt; l)

denote the (l + 1) vector de�ned by

C(y� ; zt; l) = (Cov[y� ; zt]; Cov[y� ; zt�1]; :::; Cov[y� ; zt�l])
>: (4.14)

Moreover, let M(zt; l) denote the (l+ 1)� (l+ 1) matrix whose (i; j)'th component

is given by

M(zt; l)[i; j] = Cov[zt; zt+i�j]: (4.15)

The R2 from the regression of IVt+1 onto a constant and (�2t ; �
2
t�1; :::; �

2
t�l), l � 0,

9As noted above, the GARCH di�usion model falls in this category.
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denoted R2(IVt+1; �
2
t ; l), may then be succinctly expressed as 10

R2(IVt+1; �
2
t ; l) = C(IVt+1; �

2
t ; l)

>(M(�2t ; l))
�1 C(IVt+1; �

2
t ; l)=V ar[IVt]: (4.16)

Similarly, the R2 of the regression of IVt+1 onto a constant and (IVt; IVt�1; :::; IVt�l),

l � 0, denoted R2(IVt+1; IVt; l), is given by

R2(IVt+1; IVt; l) = C(IVt+1; IVt; l)
>(M(IVt; l))

�1 C(IVt+1; IVt; l)=V ar[IVt]: (4.17)

The �nal type of forecasts we consider is based on ARMA type representations

of integrated volatility. Barndor�-Nielsen and Shephard (2002a) note that

autoregressive speci�cations for spot volatility induce an ARMA structure for the

integrated volatility process. Meddahi (2002b) shows that integrated volatility is an

ARMA(1,1) process (respectively ARMA(2,2)) process if spot volatility depends on a

single eigenfunction (respectively two eigenfunctions), and also provides closed-form

expressions for all the ARMA parameters. Based on the ARMA representations, it

is shown in the Appendix that the (population) R2 of the corresponding regression,

denoted R2(IVt+1; ARMA), takes the form

R2(IVt+1; ARMA) = 1� C1

V ar[IVt]
; (4.18)

where C1 refers to the variance of the innovation process in the ARMA representation

of the integrated volatility. The exact de�nition of C1 is likewise relegated to the

Appendix.

The results above provide a detailed characterization of the properties of the

various one-period-ahead volatility forecasts. We next turn to a discussion of the

corresponding multi-period-ahead forecasts.

10Recall that the R2 from a regression with multiple regressors, i.e., yt = c+ xt� + �t where xt
denotes a vector of explanatory variables, is simply given by

R2 =
Cov(y; x) (V ar[x])�1 Cov(x; y)

V ar[y]
:
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4.3 Multi-Step-Ahead Forecasts

The natural "realized" benchmark for the multi-step-ahead forecasts at horizon n is

given by the corresponding integrated volatility, IVt+1:t+n,

IVt+1:t+n =
nX

i=1

IVt+i: (4.19)

The following proposition generalizes Proposition 4.1 to the multi-period horizon.

Proposition 4.4 Under the assumptions of Proposition 4.1, and for integers n � 1

and l � 0

E[IVt+1:t+n] = na0; (4.20)

E[IVt+1:t+n j p� ; f� ; � � t] = na0 +

pX
i=1

ai
[1� exp(��in)]

�i
Pi(ft); (4.21)

Cov(IVt+1:t+n; �
2
t�l) =

pX
i=1

a2i
[1� exp(��in)]

�i
exp(��il); (4.22)

Cov(IVt+1:t+n; IVt�l) =

pX
i=1

a2i
[1� exp(��i)][1� exp(��in)]

�2i
exp(��il); (4.23)

V ar[IVt+1:t+n] = 2

pX
i=1

a2i
�2i

[exp(��in) + �in� 1]: (4.24)

It is now straightforward to derive the R2 of the corresponding Mincer-Zarnowitz

regressions. In particular, in analogy to the results for the one-period-ahead case, it

follows that

R2(IVt+1:t+n; Best) =
1

V ar[IVt+1:t+n]

pX
i=1

a2i
[1� exp(��in)]

2

�2i
; (4.25)

R2(IVt+1:t+n; �
2
t ) =

1

V ar[IVt+1:t+n]V ar[�2t ]

 
pX

i=1

a2i
[1� exp(��in)]

�i

!2

; (4.26)
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R2(IVt+1:t+n; IVt) =

 
pX

i=1

a2i [1� exp(��i)][1� exp(��in)]=�
2
i

!2

V ar[IVt+1:t+n]V ar[IVt]
; (4.27)

R2(IVt+1:t+n; �
2
t ; l) =

C(IVt+1:t+n; �
2
t ; l)

>M(�2t ; l)
�1 C(IVt+1:t+n; �

2
t ; l)

V ar[IVt+1:t+n]
; (4.28)

where V ar[IVt+1:t+n], V ar[IVt] and V ar[�2t ] are given respectively in (4.24), (4.5)

and (4.4). Finally, the R2 of the regression of IVt+1 onto a constant and

(IVt; IVt�1; :::; IVt�l), l � 0, denoted by R2(IVt+1:t+n; IVt; l), may be expressed as

R2(IVt+1:t+n; IVt; l) =
C(IVt+1:t+n; IVt; l)

>M(IVt; l)
�1 C(IVt+1:t+n; IVt; l)

V ar[IVt+1:t+n]
: (4.29)

The next section o�ers some illustrative numerical calculations for each of the

di�erent (non- feasible) R2 measures discussed above.

4.4 Quantifying the Forecast Performance

The speci�c di�usions underlying the numerical benchmark calculations reported

below are detailed in Section 3.2. We begin with the one-period-ahead performance

measures.

4.4.1 One-Period-Ahead Forecast Performance

The population R2's of the Mincer-Zarnowitz regressions for the forecast of the

one-period-ahead integrated volatilities are given in Table 1. First, it is noteworthy

that when only one volatility factor is employed in the ESV di�usion, then the factor

tends to be strongly serially correlated, leading to a high degree of predictability for

the integrated volatility (models M1 and M3), irrespective of the volatility measure

in the information set. Second, if another factor is brought into the model, it

will typically allow for a more volatile and less persistent factor in the volatility

dynamics (model M2). This lowers the fundamental persistence and predictability

of the volatility process and renders the integrated volatility measures more noisy

indicators of current (spot) volatility. Hence, the corresponding forecasts based on

19



IVt�j; j � 0, become less accurate relative to the forecasts that exploit more current

information. Third, there is little evidence that the addition of lagged variables to

the information set has any practical impact on forecast performance.

4.4.2 Multi-Step-Ahead Forecast Performance

The R2 values for the multi-step-ahead forecasts for the same three models are given

in Table 2. The results are reported for forecasts covering one week (n = 5), two

weeks (n = 10), and about one month (n = 20).

For each of the three models, a large fraction of the variability of the (integrated)

volatility process remains predictable, even at the monthly horizon, although the

proportion now varies substantially across the models. For models M1 and M3,

the loss of explanatory power associated with the construction of forecasts from

spot or integrated volatility rather than the true volatility state is still limited. Of

course, for model M1 the use of spot volatility is equivalent to the use of the true

volatility state. As a result, there is limited scope for improvement through the

addition of lagged variables in the information set, or the use of the theoretically

warranted ARMA(1,1) structure for model M1. For model M2, however, there is

now an appreciable deterioration in performance as we move from full information

to spot volatility, and then further on to integrated volatility. The use of additional

lagged variables and the theoretically motivated ARMA(2,2) model for integrated

volatility now also produces a small, but non-negligible improvement.

Overall, our investigation suggests that models with a single persistent volatility

factor are relatively insensitive to the choice of variables in the information set. All

natural forecast procedures do well and capture a large degree of the theoretical

predictability. In contrast, there is clearly some loss in predictive power when the

model contains a second, less persistent volatility factor. Moreover, for such models

one may obtain non-trivial gains to the forecast power by expanding the information

set to include several lags of the integrated volatility through a simple AR model

or, better, a theoretically motivated ARMA structure.

5 Volatility Forecasts based on Realized Volatility

None of the forecasts discussed in the previous section are actually feasible, as the

true volatility state vector, the spot volatility and the integrated volatility are all

latent, when only discretely sampled price data are available. The variable amongst
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these that may most readily be approximated with reasonably good precision from

observed data is the integrated volatility. In particular, as discussed in Section 2,

the observable realized volatility consistently approximates the (latent) integrated

volatility for increasingly �ner sampled returns. Of course, any practical application

necessarily relies on realized volatility constructed from �nitely sampled asset prices,

and as such inevitably embodies a measurement error vis-�a-vis the corresponding

integrated volatility. It is consequently important to assess the magnitude of this

measurement error and the associated loss in forecast eÆciency. This section

addresses these issues analytically.

5.1 Theoretical Relationships

In order to assess the loss of precision in the forecast evaluation regressions,

we explore the relation between integrated and realized volatility in more detail.

Throughout this section, we preclude drift and leverage e�ects. In this setting,

as shown in Barndor�-Nielsen and Shephard (2002a), and also emphasized by

Andersen, Bollerslev and Diebold (2002) and Meddahi (2002a), the measurement

error, Ut(h) � RVt(h)� IVt, is mean-zero, serially uncorrelated, and orthogonal to

the IVt process (i.e., Cov(Ut(h); IVt�i) = 0 for all i 2 Z). As a consequence,

V ar[RVt(h)] = V ar[IVt] + V ar[Ut(h)]; (5.1)

and

V ar[RVt+1:t+n(h)] = V ar[IVt+1:t+n] + nV ar[Ut(h)]; (5.2)

while

Cov[RVt(h); RVt�i(h)] = Cov[IVt; IVt�i] = Cov[RVt(h); IVt�i] (5.3)

where i 6= 0 and Cov[IVt; IVt�i] is given by (4.7).

Moreover, within the context of the ESV class of models, it follows from the
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results in Meddahi (2002a) that11

V ar[Ut(h)] =
4

h

 
a20h

2

2
+

pX
i=1

a2i
�2i
[exp(��ih)� 1 + �ih]

!
: (5.4)

The R2's for the Mincer-Zarnowitz regressions involving the realized volatility are

now readily derived from the corresponding R2's for the integrated volatility. The

next proposition collects the general results.

Proposition 5.1 For any ESV di�usion model without drift and leverage e�ects,

and with the realized volatility as the only regressor (apart from a constant), we have

R2(�; RVt(h)) = R2(�; IVt)
V ar[IVt]

V ar[RVt(h)]

= R2(�; RVt(h))
V ar[IVt]

V ar[IVt] + V ar[Ut(h)]
:

(5.5)

With realized volatility as the dependent variable, any set of regressors, and for any

integer n � 1,

R2(RVt+1:t+n(h); �) = R2(IVt+1:t+n; �) V ar[IVt+1:t+n]

V ar[RVt+1:t+n(h)]

= R2(IVt+1:t+n; �) V ar[IVt+1:t+n]

V ar[IVt+1:t+n] + nV ar[Ut(h)]
:

(5.6)

As a simple implication of this proposition, it follows that the R2's associated with

the one-period realized volatility forecast evaluation regressions are always lower

than the infeasible ones determined in Proposition 4.3,

R2(RVt+1; RVt) � R2(IVt+1; RVt) = R2(RVt+1; IVt) � R2(IVt+1; IVt): (5.7)

11The same formula has previously been derived by Barndor�-Nielsen and Shephard (2002a)
under the more restrictive assumption that the spot variance is a �nite linear combination of
autoregressive and independent processes (corresponding to the CEV and positive Ornstein-
Uhlenbeck processes). The result derived here coincides with this earlier formula in the case of a
unique eigenfunction in (3.3), but otherwise is more general. Similarly, expressions corresponding
to the formulas in (4.1), (4.4), (4.5), (4.7), and (4.8) have previously been established by
Barndor�-Nielsen and Shephard (2002a) in their more restrictive setting, while Barndor�-Nielsen
and Shephard (2002c, Chapter 7) give the second equality in (5.3).
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This documents the intuitive result that the use of a (feasible) realized volatility

proxy in place of the (latent) integrated volatility systematically lowers the predictive

power, irrespective of whether the proxy is inserted as a regressor, regressand, or

both. The main issue is, of course, how serious the loss in forecast eÆciency will be

in empirically realistic situations.

5.2 Illustrations based on Speci�c Models

5.2.1 Forecasts from Past Realized Volatility

To quantify the eÆciency loss that is likely to occur in practice, Tables 3 and 4 report

the populationR2's for the regressions of future integrated volatility on lagged values

of realized volatility for the three speci�c ESV models considered previously. The

sampling frequency used for the realized volatility measures correspond to 5-minute

returns for a 24-hour trading day (h = 288), an 8-hour trading day (h = 96), and

30-minute returns for a 24-hour trading day (h = 48).

Table 3 provides an indication of the feasible predictability of one-period-ahead

integrated volatility. There is a noticeable drop compared to Table 1, but a very

large proportion of integrated volatility remains predictable. The predictability also

improves markedly as we move from realized volatility measures constructed using

48 to 288 intraday observations. Moreover, it is evident that the use of additional

lagged variables in the information set is helpful only for the more imprecise realized

volatility measures based on 48 intraday price observations.

Table 4 considers the predictability of integrated volatility over longer horizons.

For models M1 and M3, the conclusions mirror those for Table 3 discussed above.

For model M2, it is increasingly obvious that more frequent sampling of the

intraday returns is bene�cial. Likewise, for the scenarios with lower predictability -

long horizons and relatively infrequent sampling of intraday returns - it is more

important to include additional explanatory variables in the formation of the

volatility forecasts.

Of course, the R2's reported above cannot be mimicked by actual data, since the

left-hand-side variable of interest - integrated volatility - is not observable. Feasible

regressions must rely on, e.g., ex-post realized volatility measures as a proxy for the

realization of future integrated volatility. Since the use of such a proxy will bias

the observable predictability downward, it is important to recognize the size of the

potential bias. The relevant population R2 from such feasible regressions may be
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derived from (5.6). Moreover, combining the above result with (5.5) allows for the

derivation of the fully feasible regression R2's based on realized volatility proxies for

integrated volatility, both as regressor and regressand. Tables 5 and 6 report on the

amount of predictability associated with such feasible regressions.

Compared to Table 3, Table 5 reveals a signi�cant loss of predictive power, even

for models M1 and M3. Of course, this is purely arti�cial as it is induced solely

by the measurement error in the integrated volatility proxy. Nonetheless, the R2's

still reveal a large amount of veri�able predictability in the integrated (realized)

volatility process. As before, we also �nd that the impact of measurement errors is

mitigated when more frequent sampling is undertaken.12

Table 6 extends the results in Table 5 to longer forecast horizons. The general

conclusions are reinforced, but one interesting di�erence from Tables 3 and 4

becomes apparent. It is now possible for the �ve-period-ahead forecasts to display a

higher degree of predictability than the one-period-ahead forecasts, as evidenced by

the results for models M1 and M3 with a sampling frequency of h = 48. This occurs

because the realization of integrated volatility is approximated more accurately over

�ve periods as opposed to just one period, relative to the true variability in the latent

integrated volatility. Thus, the decline in fundamental predictability associated with

a longer horizon is more than o�set by the relatively smaller measurement error in

the dependent variable.13 This provides a vivid illustration of the importance of

recognizing the downward bias in the true predictability induced by the need to

rely on an observable proxy for the ex-post integrated volatility realizations. At the

same time, it is clear that the downward bias is almost non-existent for the longer

20-period horizon, where the R2 �gures in Table 6 are very close to those in Table

4 across all models and sampling frequencies.

12Barndor�-Nielsen and Shephard (2002a) provide complementary one-period-ahead forecast of
integrated volatility based on realized volatilities. Their (model-based) approach uses the state-
space representation of the integrated volatility (combined with the Kalman �lter) when the spot
variance depends on autoregressive and independent factors, as in models M1 and M2. Indeed, for
these two models, their one-period-ahead forecasts correspond exactly to our forecasts based on
the ARMA representation of the realized volatility provided in Table 5.

13Formally, in (5.6) the last equation will have the fundamental predictability, R2(IVt+1:t+n; �),
decline with n, but the ratio V ar[IVt+1:t+n]=V ar[RVt+1:t+n(h)] will increase with n, and for lower
values of n this may actually raise the observed R2.
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5.2.2 Forecasts from Past Daily Squared Returns

To highlight the improved \signal-to-noise ratio" achieved by employing the realized

volatility measures based on high-frequency intraday data rather than the traditional

approach that only relies on daily data, we �nally consider the results related to the

forecasts of integrated and realized volatility based on past daily squared returns,

i.e., h = 1.

The �rst panel of Table 7 demonstrates that it is critical to employ long lags

of daily squared returns in order to predict future (integrated) volatility with any

accuracy. Consistent with the general weak GARCH principle of Drost and Werker

(1996) and Meddahi (2002b), it is evident how e�ective a simple (recursive) GARCH

structure is in parsimoniously capturing the information in the lagged squared daily

returns. However, even in the best of circumstances, a comparison of the upper

panel in Table 7 with Tables 3 and 4 reveals that the forecast eÆciency is severely

curtailed by restricting the information set to the history of daily squared returns

rather than the past realized volatilities constructed from the high-frequency data.

The lower panels of Table 7 provide corresponding evidence for feasible volatility

forecast regressions where the integrated volatility regressor is replaced by (feasible)

realized volatility approximations computed from sampling frequencies ranging from

288 intradaily observations (5 minute returns covering 24 hours) to daily data. The

use of daily squared returns as a one-step-ahead volatility proxy is representative of

much of the empirically oriented volatility literature over the last decade. The use of

cumulative squared daily returns as a volatility measure over longer weekly, monthly

and quarterly horizons has been emphasized by French, Schwert and Stambaugh

(1987) and Schwert (1989, 1990), among others.

For all scenarios in the lower panels of Table 7, we inevitably �nd an even

lower degree of predictability than implied by the corresponding integrated volatility

regressions. This is an immediate consequence of equations (5.5) and (5.6).

Nonetheless, for h = 1=288 or h = 1=96 we have suÆciently good approximations

to integrated volatility that the qualitative results are very similar to those in the

upper panel, and even for h = 1=48, the loss in observed forecast power is limited. As

such, this reinforces the conclusion from above: the (observable) forecast eÆciency

is severely curtailed if one uses only the past daily returns in forecasting the future

volatility.
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The bottom panel of Table 7 further documents the extraordinarily poor

coherence between future daily squared returns and the (near) optimal forecasts

constructed from past daily squared returns. Again, for the case where the realized

volatility proxy works very poorly, the R2's actually increase with the forecast

horizon - now often dramatically so - illustrating the signi�cance of the measurement

error in a single day's squared return relative to the corresponding volatility. It is

evident across all forecast horizons that the true predictability of integrated volatility

is wildly underestimated by the R2 from these feasible regressions based on volatility

measures constructed from daily data. This is consistent with the �ndings from the

large literature trying to evaluate the performance of alternative volatility forecasts

by studying the R2 from the associated Mincer-Zarnowitz regressions using daily

squared returns as the ex-post volatility measure. Such studies invariably �nd

the relative performance to be unstable and to di�er across both asset classes

and time periods. This is what one should expect if the dependent variable of

interest - realized ex-post (integrated) volatility - is measured with a large degree of

imprecision. Even for long daily samples, the �ndings are largely random. Only by

moving towards more meaningful ex-post realized volatility measures for integrated

volatility will it be possible to assess forecast performance with any degree of

reliability. This is, of course, exactly the point advocated in Andersen and Bollerslev

(1998). In fact, the current exposition for predictability of volatility based on daily

squared returns may be seen as an analytic extension to a much broader range of

models of the simulation-based investigation of the continuous-time GARCH model

in Andersen and Bollerslev (1998) and Andersen, Bollerslev and Lange (1999).14

6 Conclusion

This paper develops a direct analytic approach to the construction and assessment of

volatility forecasts for continuous-time di�usion models within the broad ESV class

of models. This class incorporates the most popular volatility di�usion models in

current use, and may be calibrated to account well for the major empirical features

of asset return volatility. The results provide theoretical upper bounds for the degree

of predictability based on optimal (infeasible) forecasts along with direct measures

14Speci�cally, the entry in Table 7, Panel 1, M1, row \GARCH", corresponds directly to the
entry m = 1 (in�nitely frequent sampling) for DM-dollar in Table 4 of Andersen and Bollerslev
(1998). The minor discrepancy between the numbers is due to the presence of small simulation
errors in Andersen and Bollerslev (1998).
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of the loss in forecast eÆciency associated with less precise, but more practical

(feasible) reduced-form realized volatility based procedures. As such, our results

should serve as an important theoretical foundation and inspiration for the further

development of new and improved easy-to-implement empirical volatility forecasting

procedures guided by proper (optimal) benchmark comparisons. The insights

obtained from empirical comparisons of options implied volatilities may likewise be

improved by properly accounting for the volatility error. The techniques developed

here could also be used in more e�ectively calibrating the type of continuous-time

models routinely employed in modern asset pricing theories. We leave further

theoretical and empirical work along these lines for future research.
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Appendix

We start out with a couple of lemmas that we will need later on.

Lemma A.1: We have

E

�Z h

0

Pi(fu)du

Z h

0

Pj(fu)du

�
= Æij

2

�2i
[exp(��ih) + �ih� 1] (A.1)

where Æij = 1 if i = j and Æij = 0 if i 6= j. Moreover, for n � 1, we have:

E

"Z h

0

Pi(fu)du

Z (n+1)h

nh

Pj(fu)du

#
= Æij exp(��j(n� 1)h)

[1� exp(��ih)]
2

�2i
:

(A.2)

Proof of Lemma A.1: By using Ito's Lemma, we have

E

��Z h

0

Pi(fu)du

��Z h

0

Pj(fu)du

��

= E

�Z h

0

Pi(fu)

�Z u

0

Pj(fs)ds

�
du

�
+ E

�Z h

0

Pi(fu)

�Z u

0

Pj(fs)ds

�
du

�

=

Z h

0

�Z u

0

E[Pi(fu)Pj(fs)]ds

�
du+

Z h

0

�Z u

0

E[Pj(fu)Pi(fs)]ds

�
du

=

Z h

0

�Z u

0

exp(��i(u� s))E[Pi(fs)Pj(fs)]ds

�
du

+

Z h

0

�Z u

0

exp(��j(u� s))E[Pj(fs)Pi(fs)]ds

�
du

= 2Æij

Z h

0

�Z u

0

exp(��i(u� s))ds

�
du = Æij

2

�2i
[exp(��ih) + �ih� 1];

i.e., (A.1). Besides, we get (A.2) as follows:

E

"Z h

0

Pi(fu)du

Z (n+1)h

nh

Pj(fu)du

#
= E

"Z h

0

Pi(fu)du

Z (n+1)h

nh

E[Pj(fu) j f� ; � � h]du

#

= E

"Z h

0

Pi(fu)du

Z (n+1)h

nh

exp(��j(u� h))Pj(fh)du

#

= exp(��j(n� 1)h)
1� exp(��ih)

�i

Z h

0

E[Pi(fu)Pj(fh)]du

= Æij exp(��j(n� 1)h)
1� exp(��ih)

�i

Z h

0

exp(��i(h� u))du

= Æij exp(��j(n� 1)h)
[1� exp(��ih)]

2

�2i
:�
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Lemma A.2: R2 of multi-step forecasts of an ARMA(1,1) or ARMA(2,2)

model.

1) Let yt be an ARMA(1,1) given by

yt = �+ 
yt�1 + �t � ��t�1

where �t is a weak white noise. Then, we have

R2(yt+1:t+n; ARMA) =
(1� 
n)2

(1� 
)2
V ar[yt]

V ar[yt+1:t+n]
R2(yt+1; ARMA): (A.3)

2) Let yt be an ARMA(2,2) given by

yt = �+ �1yt�1 + �2yt�2 + �t + �1�t�1 + �2�t�2

where �t is a weak white noise. Then, we have

R2(yt+1:t+n; ARMA) = 1� V ar[yt+1:t+n � BP [yt+1:t+n j Ht(y)]]

V ar[yt+1:t+n]
; (A.4)

with

V ar[yt+1:t+n �BP [yt+1:t+n j Ht(y)]] =
n�1X
i=0

(
iX

s=0

 s)
2V ar[�t]; (A.5)

where  i = A>1 �
iA2; with A1 = (1; 0; 0; 0)>; A2 = (1; 0; 1; 0)>;

� =

2
664
�1 �2 �1 �2
1 0 0 0
0 0 0 0
0 0 1 0

3
775 ;

and for a given second-order stationary process fztg, Ht(z) denotes the Hilbert-space

generated by f1; z� ; � � tg, while for a second-order stationary variable w, BP [w j
Ht(z)] denotes the best linear predictor of w given Ht(z); i.e., w = BP [w j Ht(z)] +

"; with Cov("; x) = 0; 8x 2 Ht(z):
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Proof of Lemma A.2:

1) De�ne the process mt�1 by

mt�1 = �+ 
yt�1 � ��t�1;

and let � be the real � = �(1� 
)�1: Hence, it follows that

mt�1 = � + 
(mt�2 � �) + (
 � �)�t�1:

For n � 2, we have

BP [yt+n j Ht(y)] = BP [mt+n�1 j Ht(y)] = � + 
BP [(mt+n�2 � �) j Ht(y)]

i.e.,

BP [yt+n j Ht(y)] = � + 
n�1(mt � �);

which is also valid for n = 1. Thus,

BP [yt+1:t+n j Ht(y)] = n� +
1� 
n

1� 

(mt � �);

from which it follows that

R2(yt+1:t+n; ARMA) =
V ar[BP [yt+1:t+n j Ht(y)]]

V ar[yt+1:t+n]

=
(1� 
n)2

(1� 
)2
V ar[mt]

V ar[yt+1:t+n]

=
(1� 
n)2

(1� 
)2
V ar[yt]

V ar[yt+1:t+n]

V ar[mt]

V ar[yt]
;

i.e., (A.3).

2) Following Baillie and Bollerslev (1992),

yt+n �BP [yt+n j Ht(y)] =
n�1X
i=0

 i�t+n�i;

for any n > 0. Therefore,

yt+1:t+n �BP [yt+1:t+n j Ht(y)] =
n�1X
i=0

(
iX

s=0

 s)�t+n�i;

so that

V ar[yt+1:t+n � BP [yt+1:t+n j Ht(y)]] =
n�1X
i=0

(
iX

s=0

 s)
2V ar[�t];
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i.e., (A.5). Note that while the results of Baillie and Bollerslev (1992) are derived

under the assumption that �t is a martingale di�erence sequence and refers to

E[yt+n j y� ; � � t] rather than BP [yt+n j Ht(y)], the �nal result remains valid when

�t is a weak white noise process (as for the integrated and realized volatilities); see

also Meddahi and Renault (2002) and Meddahi (2002b) for further discussion along

these lines.�

Proof of Proposition 4.1. Given that the unconditional mean of any eigenfunction

Pi(:), with i � 1, is zero, one gets (4.1). Let s be a positive real; then we have

E[�2t+s j p� ; f� ; � � t] = a0 +

pX
i=1

aiE[Pi(ft+s) j p� ; f� ; � � t]

= a0 +

pX
i=1

ai exp(��is)Pi(ft);

(A.6)

which corresponds to (4.2) for s = n. By using (A.6),

E[IVt+n j p� ; f� ; � � t] = a0 +

pX
i=1

ai

Z t+n

t+n�1

E[Pi(fu) j p� ; f� ; � � t]du

= a0 +

pX
i=1

ai

Z t+n

t+n�1

exp(��i(u� t))du Pi(ft)

= a0 +

pX
i=1

ai exp(��i(n� 1))
(1� exp(��i))

�i
Pi(ft);

i.e., (4.3). The result in (4.4) follows easily from the orthonormality of the

eigenfunction, indicated in (3.5). In addition, for any real s � 0,

V ar

�Z t�1+s

t�1

�2udu

�
= E

2
4
 

pX
i=1

ai

Z t�1+s

t�1

Pi(fu)du

!2
3
5

=
X

1�i;j�p

aiaiE

�Z t�1+s

t�1

Pi(fu)du

Z t�1+s

t�1

Pj(fu)du

�

=
X

1�i;j�p

aiaiÆij
2

�2i
[exp(��is) + �is� 1];

where the last equality follows from (A.1). Thus,

V ar

�Z t�1+s

t�1

�2udu

�
= 2

pX
i=1

a2i
�2i
[exp(��is) + �is� 1]; (A.7)
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which corresponds to (4.5) for s = 1. The result in (4.6) follows from the

orthonormality of the eigenfunctions, equations (4.3), and the following equality:

Cov(IVt+n; �
2
t ) = Cov(E[IVt+n j p� ; f� ; � � t]; �2t ):

Equation (4.8) is obtained by a similar argument. Finally, for (4.7),

Cov(IVt; IVt+n) = Cov(IV1; IV1+n)

= E

" 
pX

i=0

ai

Z 1

0

Pi(fu)du

! 
pX

i=1

ai

Z n+1

n

Pi(fu)du

!#

=
X

1�i;j�p

aiajE

�Z 1

0

Pi(fu)du

Z n+1

1

Pj(fu)du

�

=
X

1�i;j�p

aiajÆij exp(��i(n� 1))
[1� exp(��i)]

2

�2i

=

pX
i=1

a2i exp(��i(n� 1))
[1� exp(��i)]

2

�2i
;

where the second to last equality is obtained by using (A.2).�

Proof of Proposition 4.2. By straightforward calculations, it is easy to show that

for any � > 0,

[1� exp(��)]2 � �2 exp(��); (A.8)

� � [1� exp(��)]; (A.9)

2[exp(��) + �� 1] � �[1� exp(��)]; (A.10)

�2 � 2[exp(��) + �� 1]: (A.11)

Thus, by using (A.8), it follows that for any n � 1,

exp(��n) � exp(��(n� 1))
[1� exp(��)]2

�2
;

so that

Cov(�2t+n; �
2
t ) � Cov(IVt+n; IVt):

Also, by using (A.9),

[1� exp(��)]2
�2

� [1� exp(��)]
�

� 1:

It follows therefore that for any n � 1,

exp(��(n� 1))
[1� exp(��)]2

�2
� exp(��(n� 1))

[1� exp(��)]
�

� 1;
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and, hence,

Cov(IVt+n; IVt) � Cov(IVt+n; �
2
t ):

The inequality (A.10) implies that for any n � 1,

exp(��(n� 1))
[1� exp(��)]

�
� [1� exp(��)]

�
� 2

[exp(��) + �� 1]

�2
;

and, hence,

Cov(IVt+n; �
2
t ) � V ar[IVt]:

Finally, by (A.11),

V ar[IVt] � V ar[�2t ];

which completes the proof of Proposition 4.2.�

Proof of (4.10). By de�nition, we have

R2(IVt+1; Best) =
V ar[E[IVt+1 j p� ; f� ; � � t]]

V ar[IVt+1]
:

By using (4.3) for n = 1 along with the orthonormality of the eigenfunctions, i.e.,

(3.5), we get

V ar[E[IVt+1 j p� ; f� ; � � t]] =

pX
i=1

a2i
[1� exp(��i)]

2

�2i
;

which combines to show (4.10).�

Proof of (4.11) and (4.12). By de�nition, we have

R2(IVt+1; �
2
t ) =

Cov(IVt+1; �
2
t )

2

V ar[IVt+1]V ar[�2t ]
:

Thus, by using (4.6) for n = 1, we get (4.11). A similar argument results in 4.12).�

Proof of Proposition 4.3. De�ning

qi =
a2iPp
i=1 a

2
i

; �i =
1� exp(��i)

�i

; and �i =
2(exp(��i) + �i � 1)

�2i
;

the following inequalities readily obtain,

0 < �2i � �i � �i � 1:

From equations (4.10), (4.12), and Proposition 4.1, we have that

R2(IVt+1; IVt) � R2(IVt+1; Best)
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if and only if

pX
i=1

a2i
[1� exp(��i)]

2

�2i
�

pX
i=1

a2i
[1� exp(��i)]

2

�2i
V ar[IVt]:

The above inequality may be written as, 
pX

i=1

qi�
2
i

!2

�
 

pX
i=1

qi�
2
i

! 
pX

i=1

qi�i

!
;

or equivalently,
pX

i=1

qi�
2
i �

pX
i=1

qi�i;

where the inequality holds element-by-element in the sum.

Likewise, from equation (4.11) and the above de�nitions, the inequality

R2(IVt+1; �
2
t ) � R2(IVt+1; Best)

is tantamount to  
pX

i=1

qi�i

!2

�
pX

i=1

qi�
2
i :

Letting the qi de�ne a discrete probability distribution and denoting the

associated expectation operator Eq[x] =
Pp

i=1 qixi for x = (x1; ::; xp), this may

be alternatively expressed as

Eq[�] � (Eq[�
2])1=2;

which is simply Jensen's inequality. Note, that for p = 1, and thus q = q1 = 1 and

�1 = � � 1, this relation turns into the identity: � = (�2)1=2.

By similar arguments the relation

R2(IVt+1; IVt) � R2(IVt+1; �
2
t )

holds if and only if  
pX

i=1

qi�
2
i

!2

�
 

pX
i=1

qi�i

!2 pX
i=1

qi�i

!
: (A.12)
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For p = 1, and thus again q = q1 = 1 and �1 = � � 1, this relation becomes

(�2)2 � �2�;

which again is valid from the noted inequalities above.

To illustrate the indeterminacy for p = 2, suppose that q1 = 0:9 and q2 = 0:1,

while �1 = 0:02 and �2 = 4. The inequality in (A.12) then takes the form,

:7735 � :7711;

and hence it is violated. Changing only one parameter, �2 = 1, the relation is

instead

:8504 � :8811;

and the inequality holds. Similar examples may be constructed for cases with a

larger number of eigenfunctions, so there is no universal ranking between this pair

of forecast procedures, except for the single eigenfunction case.�

Proof of (4.16) and (4.17). Both are simple applications of footnote 10.�

Proof of (4.18) and ARMA representations of integrated volatility.

By de�nition, we have

R2(IVt+1; ARMA) =
V ar[BP [IVt+1 j Ht(IV )]]

V ar[IVt]
= 1�V ar[IVt+1 �BP [IVt+1 j Ht(IV )]]

V ar[IVt]
;

i.e., (4.18) given that IVt+1 � BP [IVt+1 j Ht(IV )] is the innovation of IVt+1 in its

ARMA representation. We now derive the variance, denoted C1, of this innovation

(supporting results are given in Meddahi, 2002b).

1) When the spot variance depends on one eigenfunction, with a corresponding

eigenvalue �, Meddahi (2002b) shows that IVt is an ARMA(1,1) with the following

representation:

IVt = (1� exp(��))a0 + exp(��)IVt�1 + �t � ��t�1; (A.13)

where �t is a weak white noise with variance denoted C1,

V ar[�t] = C1 =
C2

1 + �2
;

where

C2 = (1 + exp(�2�))V ar[IVt]� 2 exp(��)Cov(IVt; IVt�1); � =
�1 +

p
1� 4�2

2�

� =
C3

C2
; C3 = � exp(��)V ar[IVt] + Cov(IVt; IVt�1)
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and V ar[IVt] and Cov(IVt; IVt�1) are given respectively in (4.5) and (4.7).

2) When the spot variance depends on two eigenfunctions (with corresponding

eigenvalues � and ~�), Meddahi (2002b) shows that IVt is an ARMA(2,2) with the

following representation:

IVt = (1� exp(��))(1� exp(�~�))a0 + (exp(��) + exp(�~�))IVt�1

� exp(��� ~�)IVt�2 + �t � �1�t�1 � �2�t�2;
(A.14)

where �t is a weak white noise with variance C1,

C1 =
C2

1 + �2
1 + �2

2

where

C2 = (1 + exp[�2(�+ ~�)] + (exp[��] + exp[�~�])2)V ar[IVt]

� 2(exp[��] + exp[�~�])(1 + exp[�(� + ~�)])Cov[IVt; IVt�1]

+ 2 exp[�(� + ~�)]Cov[IVt; IVt�2];

�1 =
�2

1� �2

�1
�2
; �2 =

2s+ 1�p4s+ 1

2s
; �1 =

C3

C2

; �2 =
C4

C2

;

C3 = �(1 + exp[�(� + ~�)])(exp[��] + exp[�~�])V ar[IVt]

+ (1 + (exp[��] + exp[�~�])2 + exp[�(�+ ~�)])Cov[IVt; IVt�1]

� (exp[��] + exp[�~�])Cov[IVt; IVt�2];

C4 = exp[�(�+ ~�)])V ar[IVt]� (exp[��] + exp[�~�])Cov[IVt; IVt�1] + Cov[IVt; IVt�2];

s = 2�1�22�
�2
1

�
�2� ��12 + sign(�2)

q
(2 + �2�1)2 � 4�21�

�2
2

�
;

and sign(�2) = 1 or �1 depending upon whether �2 > 0 or �2 < 0.�

Proof of Proposition 4.4. The result in (4.20) is a simple application of (4.1).

By applying (4.3) we get:

E[IVt+1:t+n j p� ; f� ; � � t] = na0 +
nX

s=1

pX
i=1

ai exp(��i(s� 1))
[1� exp(��i)]

�i
Pi(ft)

= na0 +

pX
i=1

ai

 
nX

s=1

exp(��i(s� 1))

!
[1� exp(��i)]

�i

Pi(ft)

= na0 +

pX
i=1

ai
[1� exp(��in)]

�i
Pi(ft);
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i.e., (4.21). Similarly, by using (4.6) one gets:

Cov(IVt+1:t+n; �
2
t�l) =

nX
s=1

pX
i=1

a2i exp(��i(s+ l � 1))
[1� exp(��i)]

�i

=

pX
i=1

a2i exp(��il)

 
nX

s=1

exp(��i(s� 1))

!
[1� exp(��i)]

�i

=

pX
i=1

a2i
[1� exp(��in)]

�i

exp(��il);

i.e., (4.22). A similar proof establishes (4.23). Finally, (4.24) follows as a special

case of (A.7) for s = n.�

Proof of (4.25), (4.26), (4.27), (4.28) and (4.29). By using Proposition 4.4,

the proofs of (4.25), (4.26), (4.27), (4.28) and (4.29) are similar to the proofs of

(4.10), (4.11), (4.12), (4.16) and (4.17) respectively.�

R2s of Multi-step forecasts of Integrated Volatility. This is a simple

application of Lemma A.2. The ARMA representation of integrated volatility is

given in (A.13) when the spot variance depends on one eigenfunction and in (A.14)

when the spot variance depends on two eigenfunctions.�

ARMA representations of realized volatility. Here, we give the ARMA

representation of realized volatility provided in Meddahi (2002b). Note that the

ARMA representation of the realized volatility RVt(h) is very similar to that of

the integrated volatility. In particular, it has the same constant and autoregressive

roots. There is a di�erence, however, in the variance of the innovation and the

moving average roots.

1) When the spot variance depends on one eigenfunction, with a corresponding

eigenvalue �, Meddahi (2002b) shows that RVt(h) is an ARMA(1,1) with the

following representation:

RVt(h) = (1� exp(��))a0 + exp(��)RVt�1(h) + �t(h)� �(h)�t�1(h); (A.15)

where �t(h) is a weak white noise with variance denoted C1(h),

V ar[�t(h)] = C1(h) =
C2(h)

1 + �2(h)
;
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where

C2(h) = (1 + exp(�2�))V ar[RVt(h)]� 2 exp(��)Cov(RVt(h); RVt�1(h));

�(h) =
�1 +p1� 4�2(h)

2�(h)
;

�(h) =
C3(h)

C2(h)
; C3(h) = � exp(��)V ar[RVt(h)] + Cov(RVt(h); RVt�1(h))

and V ar[RVt(h)] and Cov(RVt(h); RVt�1(h)) are given respectively in (5.1) and

(5.3).

2) When the spot variance depends on two eigenfunctions (with corresponding

eigenvalues � and ~�), Meddahi (2002b) shows that RVt(h) is an ARMA(2,2) with

the following representation:

RVt(h) = (1� exp(��))(1� exp(�~�))a0 + (exp(��) + exp(�~�))RVt�1(h)

� exp(��� ~�)RVt�2(h) + �t(h)� �1(h)�t�1(h)� �2(h)�t�2(h);
(A.16)

where �t(h) is a weak white noise with variance C1(h),

C1(h) =
C2(h)

1 + �2
1(h) + �2

2(h)

where

C2(h) = (1 + exp[�2(�+ ~�)] + (exp[��] + exp[�~�])2)V ar[RVt(h)]

� 2(exp[��] + exp[�~�])(1 + exp[�(� + ~�)])Cov[RVt(h); RVt�1(h)]

+ 2 exp[�(� + ~�)]Cov[RVt(h); RVt�2(h)];

�1(h) =
�2(h)

1� �2(h)

�1(h)

�2(h)
; �2(h) =

2s(h) + 1�p4s(h) + 1

2s(h)
; �1(h) =

C3(h)

C2(h)
; �2(h) =

C4(h)

C2(h)
;

C3(h) = �(1 + exp[�(� + ~�)])(exp[��] + exp[�~�])V ar[RVt(h)]

+ (1 + (exp[��] + exp[�~�])2 + exp[�(�+ ~�)])Cov[RVt(h); RVt�1(h)]

� (exp[��] + exp[�~�])Cov[RVt(h); RVt�2(h)];

C4(h) = exp[�(� + ~�)])V ar[RVt(h)]

� (exp[��] + exp[�~�])Cov[RVt(h); RVt�1(h)] + Cov[RVt(h); RVt�2(h)];

s(h) = 2�1�22(h)�
�2
1 (h)

�
�2� �2(h)

�1 + sign(�2(h))

q
(2 + �2(h)

�1)2 � 4�21(h)�
�2
2 (h)

�
;

and V ar[RVt(h)] and Cov(RVt(h); RVt�i(h)), i = 1; 2, are given respectively in (5.1)

and (5.3).�
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Proof of Proposition 5.1. Let y be a second-order stationary variable such that

Cov(y; Ut(h)) = 0. Then:

R2(y; RVt(h)) =
Cov(y; RVt(h))

2

V ar[y]V ar[RVt(h)]
=
Cov(y; IVt + Ut(h))

2

V ar[y]V ar[RVt(h)]
=

Cov(y; IVt)
2

V ar[y]V ar[IVt]

V ar[IVt]

V ar[RVt(h)]
;

i.e., (5.5). Furthermore, for any n � 1 and h > 0, we have

BP [RVt+1:t+n(h) j Ht(RV (h))] = BP [IVt+1:t+n j Ht(RV (h))]

given that RVt+i(h) = IVt+i + Ut+i(h), while Ut+i(h); i � 1, is uncorrelated with

any variable in Ht(RV (h)). Note that the same results holds if one considers the

best predictor (of RVt+1:t+n(h) or IVt+1:t+n) given lags of RVt(h) (and a constant).

Hence,

BP [RVt+1:t+n(h) j :] = BP [IVt+1:t+n j :];
and as a consequence,

R2(RVt+1:t+n(h); :) =
V ar[BP [RVt+1:t+n(h) j :]]

V ar[RVt+1:t+n(h)]
=
V ar[BP [IVt+1:t+n j :]]
V ar[RVt+1:t+n(h)]

=
V ar[BP [IVt+1:t+n j :]]

V ar[IVt+1:t+n]

V ar[IVt+1:t+n]

V ar[RVt+1:t+n(h)]

= R2(IVt+1:t+n; :)
V ar[IVt+1:t+n]

V ar[IVt+1:t+n] + nV ar[Ut(h)]
;

i.e., (5.6).�
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Table 1

Ideal one-period-ahead forecasts

of integrated volatility

Model M1 M2 M3

R2(IVt+1; Best) .977 .830 .989

R2(IVt+1; �
2
t ) .977 .819 .989

R2(IVt+1; �
2
t ; 1) .977 .820 .989

R2(IVt+1; �
2
t ; 4) .977 .821 .989

R2(IVt+1; IVt) .955 .689 .977
R2(IVt+1; IVt; 1) .957 .694 .979
R2(IVt+1; IVt; 4) .957 .698 .979
R2(IVt+1; ARMA) .957 .699 {

Table 2

Ideal multi-period-ahead forecasts of integrated volatility

Model M1 M2 M3
Horizon 5 10 20 5 10 20 5 10 20

R2(IVt+1:t+n; Best) .891 .797 .645 .586 .479 .338 .945 .895 .807

R2(IVt+1:t+n; �
2
t ) .891 .797 .645 .492 .349 .222 .945 .894 .804

R2(IVt+1:t+n; �
2
t ; 1) .891 .797 .645 .499 .359 .231 .945 .894 .804

R2(IVt+1:t+n; �
2
t ; 4) .891 .797 .645 .508 .371 .242 .945 .894 .804

R2(IVt+1:t+n; IVt) .871 .779 .630 .445 .320 .214 .934 .885 .796
R2(IVt+1:t+n; IVt; 1) .873 .781 .632 .445 .330 .216 .936 .886 .796
R2(IVt+1:t+n; IVt; 4) .874 .781 .632 .446 .343 .227 .936 .886 .797
R2(IVt+1:t+n; ARMA) .874 .781 .632 .460 .347 .231 { { {
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Table 3

One-period-ahead forecasts of integrated volatility based on realized volatility

Model M1 M2 M3
1/h 48 96 288 48 96 288 48 96 288

R2(IVt+1; RVt(h)) .836 .891 .932 .476 .563 .641 .881 .927 .960
R2(IVt+1; RVt(h); 1) .873 .906 .934 .507 .574 .642 .917 .943 .962
R2(IVt+1; RVt(h); 4) .883 .908 .934 .519 .580 .642 .929 .946 .963
R2(IVt+1; RVt(h); ARMA) .883 .908 .934 .522 .582 .646 - - -

Table 4

Multi-period-ahead forecasts of integrated volatility based on realized volatility

Horizon 5 10 20
1/h 48 96 288 48 96 288 48 96 288

Model M1

R2(IVt+1:t+n; RVt(h)) .762 .813 .851 .682 .727 .761 .551 .588 .615
R2(IVt+1:t+n; RVt(h); 1) .797 .827 .852 .713 .740 .762 .576 .598 .616
R2(IVt+1:t+n; RVt(h); 4) .805 .829 .852 .720 .741 .762 .582 .599 .616
R2(IVt+1:t+n; RVt(h); ARMA) .806 .829 .852 .721 .741 .762 .582 .599 .616

Model M2

R2(IVt+1:t+n; RVt(h)) .307 .364 .414 .226 .268 .305 .148 .175 .199
R2(IVt+1:t+n; RVt(h); 1) .339 .381 .419 .255 .285 .312 .169 .188 .205
R2(IVt+1:t+n; RVt(h); 4) .360 .395 .429 .277 .302 .325 .186 .202 .216
R2(IVt+1:t+n; RVt(h); ARMA) .368 .400 .434 .286 .309 .330 .194 .208 .221

Model M3

R2(IVt+1:t+n; RVt(h)) .843 .886 .918 .797 .839 .869 .717 .754 .781
R2(IVt+1:t+n; RVt(h); 1) .877 .901 .920 .830 .853 .871 .747 .768 .783
R2(IVt+1:t+n; RVt(h); 4) .889 .904 .920 .841 .856 .871 .757 .770 .784
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Table 5

One-period-ahead forecasts of realized volatility based on realized volatility

Model M1 M2 M3
1/h 48 96 288 48 96 288 48 96 288

R2(RVt+1(h); RVt(h)) .731 .832 .911 .328 .460 .597 .795 .879 .943
R2(RVt+1(h); RVt(h); 1) .765 .846 .912 .350 .469 .597 .827 .894 .945
R2(RVt+1(h); RVt(h); 4) .773 .848 .912 .358 .474 .600 .838 .897 .945
R2(RVt+1(h); RVt(h); ARMA) .773 .848 .912 .360 .475 .601 - - -

Table 6

Multi-period-ahead forecasts of realized volatility based on realized volatility

Horizon 5 10 20
1/h 48 96 288 48 96 288 48 96 288

Model M1

R2(RVt+1:t+n(h); RVt(h)) .740 .801 .847 .671 .722 .759 .546 .585 .614
R2(RVt+1:t+n(h); RVt(h); 1) .774 .815 .848 .702 .734 .760 .571 .595 .615
R2(RVt+1:t+n(h); RVt(h); 4) .782 .816 .848 .709 .735 .760 .577 .597 .615
R2(RVt+1:t+n(h); RVt(h); ARMA) .782 .816 .848 .709 .735 .760 .577 .597 .615

Model M2

R2(RVt+1:t+n(h); RVt(h)) .274 .343 .406 .210 .258 .302 .140 .170 .197
R2(RVt+1:t+n(h); RVt(h); 1) .303 .359 .410 .237 .275 .308 .160 .184 .203
R2(RVt+1:t+n(h); RVt(h); 4) .321 .372 .421 .258 .291 .321 .177 .197 .214
R2(RVt+1:t+n(h); RVt(h); ARMA) .328 .378 .425 .266 .297 .326 .184 .202 .219

Model M3

R2(RVt+1:t+n(h); RVt(h)) .824 .876 .914 .788 .834 .867 .713 .752 .781
R2(RVt+1:t+n(h); RVt(h); 1) .858 .891 .917 .821 .848 .869 .742 .765 .783
R2(RVt+1:t+n(h); RVt(h); 4) .869 .895 .917 .832 .851 .869 .752 .768 .783
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Table 7

Forecasts of integrated and realized volatilities from past daily squared returns

Model M1 M2 M3
Horizon 1 5 10 20 1 5 10 20 1 5 10 20

IV lag

0 .122 .111 .100 .081 .031 .020 .015 .010 .157 .150 .142 .128
1 .210 .191 .171 .138 .048 .033 .025 .017 .266 .255 .241 .217
4 .360 .329 .294 .238 .072 .054 .043 .029 .452 .432 .409 .369
19 .493 .450 .402 .325 .092 .074 .061 .043 .639 .611 .580 .523
39 .498 .454 .406 .328 .093 .075 .062 .044 .653 .625 .593 .535
GARCH .498 .454 .406 .328 .093 .075 .062 .044 - - - -

1/h lag 288

288 0 .119 .110 .099 .080 .029 .019 .015 .009 .154 .149 .142 .128
1 .205 .190 .171 .138 .044 .032 .024 .016 .261 .254 .241 .217
4 .352 .327 .293 .238 .066 .052 .042 .029 .444 .430 .408 .369
19 .482 .448 .401 .325 .085 .072 .060 .043 .628 .609 .579 .522
39 .486 .452 .405 .328 .086 .074 .061 .043 .641 .623 .592 .534
GARCH .486 .452 .405 .328 .086 .074 .061 .043 - - - -

96 0 .114 .109 .099 .080 .025 .019 .014 .009 .149 .148 .141 .128
1 .196 .188 .170 .137 .039 .031 .024 .016 .252 .252 .240 .216
4 .336 .324 .292 .237 .058 .050 .040 .028 .429 .427 .407 .368
19 .460 .443 .399 .324 .075 .069 .058 .042 .606 .604 .577 .521
39 .465 .447 .403 .327 .076 .070 .059 .043 .619 .618 .590 .533
GARCH .465 .447 .403 .327 .076 .070 .059 .043 - - - -

48 0 .107 .108 .098 .080 .021 .018 .014 .009 .142 .147 .140 .127
1 .184 .185 .168 .137 .033 .029 .023 .016 .240 .249 .238 .216
4 .315 .319 .289 .236 .049 .048 .039 .029 .408 .423 .404 .367
19 .432 .437 .396 .322 .063 .066 .056 .042 .576 .598 .573 .520
39 .436 .441 .400 .325 .064 .067 .057 .043 .589 .611 .586 .532
GARCH .436 .441 .400 .325 .064 .067 .057 .043 - - - -

1 0 .016 .046 .057 .057 .001 .003 .003 .003 .026 .073 .092 .099
1 .027 .079 .098 .098 .002 .005 .005 .005 .043 .123 .156 .168
4 .046 .136 .168 .167 .003 .008 .009 .008 .073 .209 .264 .286
19 .063 .185 .229 .229 .004 .011 .013 .012 .103 .295 .374 .405
39 .064 .187 .232 .231 .004 .012 .014 .013 .105 .302 .383 .415
GARCH .064 .187 .232 .231 .004 .012 .014 .013 - - - -

43



References

A��t-Sahalia, Y., L.P. Hansen and J. Scheinkman (2002), \Operator Methods
for Continuous-Time Markov Models," in Y. Ait-Sahalia and L.P. Hansen

(Eds.), Handbook of Financial Econometrics, forthcoming.

Alizadeh, S., M. Brandt and F. Diebold (2002), \Range-Based Estimation of

Stochastic Volatility Models," Journal of Finance, 57, 1047-1091.

Andersen, T.G., L. Benzoni and J. Lund (2002), \ An Empirical Investigation

of Continuous-Time Equity Return Models," Journal of Finance, 57, 1239-

1284.

Andersen, T.G. and T. Bollerslev (1998), \Answering the Skeptics: Yes,

Standard Volatility Models Do Provide Accurate Forecasts," International

Economic Review, 39, 885-905.

Andersen, T.G., T. Bollerslev and F.X. Diebold (2002), \Parametric and

Nonparametric Measurements of Volatility," in Y. A��t-Sahalia and L.P.

Hansen (Eds.), Handbook of Financial Econometrics, forthcoming.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2001), \The

Distribution of Exchange Rate Volatility," Journal of the American

Statistical Association, 96, 42-55.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2002), \Modeling
and Forecasting Realized Volatility," Econometrica, forthcoming.

Andersen, T.G., T. Bollerslev and S. Lange (1999), \Forecasting Financial

Market Volatility: Sample Frequency vis-�a-vis Forecast Horizon," Journal

of Empirical Finance, 6, 457-477.

Andreou, E. and E. Ghysels (2002), \Rolling-Sampling Volatility Estimators:

Some New Theoretical, Simulation and Empirical Results," Journal of

Business and Economic Statistics, 20, 363-276.

Baillie, R.T. and T. Bollerslev (1992), \Prediction in Dynamic Models with

Time-Dependent Conditional Variances," Journal of Econometrics, 52, 91-

113.

Barndor�-Nielsen, O.E. and N. Shephard (2001), \Non-Gaussian OU based

Models and some of their uses in Financial Economics," Journal of the

Royal Statistical Society, B, 63, 167-241.

Barndor�-Nielsen, O.E. and N. Shephard (2002a), \Econometric Analysis of

Realised Volatility and its Use in Estimating Stochastic Volatility Models,"
Journal of the Royal Statistical Society, B, 64, 253-280.

Barndor�-Nielsen, O.E. and N. Shephard (2002b), \Estimating Quadratic

Variation Using Realised Variance," Journal of Applied Econometrics,

forthcoming.

Barndor�-Nielsen, O.E. and N. Shephard (2002c), Financial Volatility and

Levy Based Models, unpublished book, NuÆeld College, Oxford University.

Billingsley, P. (1986), Probability and Measure, John Wiley & Sons, New York.

44



Bollerslev, T. and H. Zhou (2002), \Estimating Stochastic Volatility

Di�usion Using Conditional Moments of Integrated Volatility," Journal

of Econometrics, 109, 33-65.

Campbell, B., R. Garcia, N. Meddahi and E. Sentana (2002), \Understanding

Long-Horizon Predictability of Asset Returns," work in progress,

Universit�e de Montr�eal.

Chen, X., L.P. Hansen and J. Scheinkman (2000), \Principal Components

and the Long Run," unpublished manuscript, University of Chicago.

Chong, Y.Y. and D. Hendry (1986), \Econometric Evaluation of Linear

Macro-Economic Models," Review of Economic Studies, 53, 671-690.

Christo�ersen, P.F. and F.X. Diebold (2000), \How Relevant is Volatility

Forecasting for Financial Risk Management," Review of Economics and

Statistics, 81, 12-22.

Comte, F. and E. Renault (1998), \Long Memory in Continuous Time

Stochastic Volatility Models," Mathematical Finance, 8, 291-323.

Drost, F.C. and TH.E. Nijman (1993), \Temporal Aggregation of GARCH

processes," Econometrica, 61, 909-927.

Drost, F.C. and B.J.M. Werker (1996), \Closing the GARCH Gap:

Continuous Time GARCH Modeling," Journal of Econometrics, 74, 31-58.

Engle, R.F. (2000), \The Econometrics of Ultra-High Frequency Data,"

Econometrica, 68, 1-22.

Engle, R.F. and G.G.J. Lee (1999), \A Permanent and Transitory Component

Model for Stock Return Volatility," in Cointegration, Causality and

Forecasting: a festschrift in Honour of Clive W.J. Granger, R.F. Engle

and H. White eds., Oxford University Press.

French, K.R., G.W. Schwert and R.F. Stambaugh (1987), \Expected Stock

Returns and Volatility," Journal of Financial Economics, 19, 3-29.

Hansen, L.P. and J. Scheinkman (1995), \Back to the Future:

Generating Moment Implications for Continuous Time Markov Processes,"
Econometrica , 63, 767-804.

Heston, S.L. (1993), \A Closed Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options," Review of

Financial Studies, 6, 327-344.

Gallant, A.R., C. Hsu and G. Tauchen (1999), \Using Daily Range Data
to Calibrate Volatility Di�usions and Extract the Forward Integrated

Variance," The Review of Economics and Statistics, 81, 617-631.

Gallant, R. and G. Tauchen (2002), \Simulated Score Methods and Indirect

Inference for Continuous-Time Models," in Y. A��t-Sahalia and L.P. Hansen

(Eds.), Handbook of Financial Econometrics, forthcoming.

Garcia, R., M.A. Lewis and E. Renault (1991), \Estimation of Objective and

Risk-Neutral Distributions Based on Moments of Integrated Volatility,"

unpublished manuscript, University of Montr�eal.

45



Hansen, L.P. and J. Scheinkman (1995), \Back to the Future:

Generating Moment Implications for Continuous Time Markov Processes,"

Econometrica, 63, 767-804.

Harvey, A.C., E. Ruiz and N. Shephard (1994), \Multivariate Stochastic

Variance Models," Review of Economic Studies, 61, 247-264.

Ho�man-J�rgensen, J. (1994), Probability with a View Toward Statistics,

Volume 1, Chapman and Hall Probability Series, New-York: Chapman

& Hall.

Hull, J. and A. White (1987), \The Pricing of Options on Assets with

Stochastic Volatilities," The Journal of Finance, Vol XLII, 281-300.

Johannes, M. and N. Polson (2002), \Numerical Bayesian Methods for

Estimating Continuous-Time Models," in Y. A��t-Sahalia and L.P. Hansen

(Eds.), Handbook of Financial Econometrics, forthcoming.

Meddahi, N. (2001), \An Eigenfunction Approach for Volatility Modeling,"
CIRANO working paper, 2001s-70.

Meddahi, N. (2002a), \A Theoretical Comparison Between Integrated and

Realized Volatility," Journal of Applied Econometrics, forthcoming.

Meddahi, N. (2002b), \ARMA Representation of Two-Factor Models,"

working paper, University of Montr�eal.

Meddahi, N. and E. Renault (2002), \Temporal Aggregation of Volatility

Models," Journal of Econometrics, forthcoming.

Mincer, J. and V. Zarnowitz (1969), \The Evaluation of Economic Forecasts,"

in J. Mincer (Ed.), Economic Forecasts and Expectation, National Bureau

of Research, New York.

Nelson, D.B. (1990), \ARCH Models as Di�usion Approximations," Journal

of Econometrics, 45, 7-39.

Schwert, G.W. (1989), \Why Does Stock Market Volatility Change Over
Time?," Journal of Finance, 44, 1115-1154.

Schwert, G.W. (1990), \Stock Volatility and the Crash of `87," Review of

Financial Studies, 3, 77-102.

Wiggins, J.B. (1987), \Options Values under Stochastic Volatility: Theory

and Empirical Estimates", Journal of Financial Economics, 19, 351-372.

Wong, E. (1964), \The Construction of a Class of Stationary Marko�

Processes," in R. Belleman (Ed.), Sixteenth Symposium in Applied

Mathematics, Stochastic Processes in Mathematical Physics and

Engineering, American Mathematical Society, Providence, 264-276.

46


