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Abstract

Nowadays, many models in finance are specified in continuous time. It
seems natural to use all observations available in estimating these models. In
this way one arrives quickly at using high-frequency data. However, an impor-
tant component of high-frequency data are several microstructure effects. In
estimating the underlying structural model it is important to recognize these
effects. It is the goal of the current paper to present a methodology in this di-
rection, i.e. to identify a continuous time structural model from high-frequency
observations contaminated by microstructure effects. Previous econometric
work in this area contains the work of Engle and Russell (1995), Engle (1996),
and Ghysels and Jasiak (1996).

The idea of our paper is as follows. We start with the modelisation of an
underlying structural model in continuous time. Then, we explicitely take into
account the microstructure effects. There are three important aspects. First is
the uncertainty in the transaction times. Secondly, we allow for possible jumps
in the underlying continuous time process for the spot price. Finally, we allow
for additional microstructure noise that implies that observed returns are not
necessarily equal to those in the structural model. In this way we get a discrete
time model implied by the jump-diffusion observed at random frequencies. We
are able to calculate explicitely conditional moments in some relevant cases.
These moments are then used to construct estimators for the parameters of
interest in the model. We plan to implement the methods presented using
high-frequency data.
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1 Introduction

R. Engle introduced his seminal paper about ARCH modelling (Engle (1982)) via
the one-period forecast of a random variable g;: “the variance of this one-period
forecast is given by Var(y;|y; 1). Such an expression recognizes that the conditional
forecast variance depends upon past information and may therefore be a random
variable”. But, while Engle (1982) was concerned with forecasting the rate of inflation
considered as a univariate Markov process (of order 1), this simple ARCH model,
although widely used nowadays to capture the temporal dynamics of asset return
volatility, is not actually sufficiently rich to make optimal forecasts using all the
multivariate information in transaction data. Moreover, if the econometrician is not
able to characterize efficient use of such public information by the economic agents,
then he will not be able to identify the asymmetric information models of the market
micro-structure literature. For all these reasons, there is a need to define a more
sophisticated statistical model that takes into account at least two types of additional
information.

On the one hand, as noticed by Engle (1996) himself, the price of a financial
contract is almost never the only relevant information which is available about this
contract. Other potentially important information is “the volume of the contract (...),
the posted bid and asked prices at the time (...), the counter-parties to the trade, the
posted bid and asked prices for other stocks, the order mechanism, and many other
features of a trade which are of interest in studying market microstructure”. On the
other hand, high-frequency financial time series which are transaction-based (and
therefore irregularly spaced) are becoming more widely available and used in recent
years. This provides the econometrician with a new type of data which contains the
time of the transaction itself.

Making an adjustment of ARCH models to capture such tick-by-tick volatility
dynamics would lead to a severe aggregation of available information about the en-
vironmental variables of the return process itself and the time stamps of the realized
value of this return as well. There is naturally a loss of information in such aggregates
and in turn a lack of efficiency in associated forecasts. The interest of this paper is
to develop a general methodology which is well-suited to avoid such aggregation. In
order to do this, we refer to two different strands of the recent litterature.

The first strand discusses temporal aggregation properties of GARCH models
(Drost and Nijman (1993), Drost and Werker (1996), and Meddahi and Renault (1996)).
In this paper we will follow Meddahi and Renault (1996) that proposes to reconcile
the GARCH and stochastic volatility (SV) paradigms, by claiming that the tradi-
tional debate about observable past information (in the GARCH spirit) versus un-
observable state-space conditioning information (in the SV spirit) should be avoided
since the econometrician has no idea about something like a structural level of dis-
aggregation. The main point of that paper is that a well-specified volatility model
should be such that one is always allowed to reduce the information set without inval-



idating the model. They introduce a square-root autoregressive stochastic volatility
(SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics
for squared innovations, but weakens the GARCH structure (in a spirit close to the
weak GARCH modelling in Drost and Nijman (1993)). This provides one with the
required robustness properties with respect to various kinds of aggregation, including
temporal aggregation. A by product of their modelling is that, since it can always
be viewed as resulting from discrete time sampling in an underlying continuous time
SV model (compare Drost and Werker (1996)), it provides a versatile tool to charac-
terize stochastic volatility dynamics when data on asset prices are irregularly spaced.
The second ingredient of our recipe is the recent literature about modelling of trans-
action arrival times, including Engle and Russell (1995), Engle (1996), Ghysels and
Jasiak (1996), Bauwens and Giot (1997), and Ghysels, Gourieroux and Jasiak (1997).
The central idea of this literature is an autoregressive conditional duration (ACD)
modelling, which will be discussed in more detail in Section 3.

The contribution of the present paper is threefold. First, in Section 2, we extend
Drost and Werker (1996) and Meddahi and Renault (1996) to define a stochastic
volatility model for unequally spaced observations. In short, volatility over durations
in a stochastic volatility setting is affected by two things. First, of course, longer
durations generally imply higher total volatility. Secondly, the irregularly spaced
datapoints induce (by definition) a temporal aggregation effect, as is modelled in
Ghysels and Jasiak (1996) in a GARCH framework. Intuitively, the influence of
previous volatility depends on how long ago previous volatility refers to, i.e. on the
previous duration. We, using a stochastic volatility framework, identify both effects
by starting from a continuous time model.

Our second contribution is to extend the stochastic volatility point of view to du-
ration modelling. In the spirit of Meddahi and Renault (1996), we define (Section 3)
a dynamic model of transaction dates which extends the ACD model in the same way
that the SARV model extends traditional GARCH models. Related work is Ghysels,
Gourieroux and Jasiak (1997). A by product of the general framework developped in
Sections 2 and 3 is that it allows one to perform inference about a SV model specified
in continuous time from high-frequency (irregularly spaced) data.

However, it is well-known that the use of tick-by-tick data to identify underlying
continuous time structures (although probably optimal in the sense of statistical ef-
ficiency) poses some serious challenges because observations are contaminated (with
respect to a continuous diffusion model which should reflect asset prices in equilib-
rium) by microstructure effects. The third contribution of this paper (Section 4) is
to propose an integrated framework to estimate continuous time models from high-
frequency data. There are several important aspects. First is the uncertainty in the
transaction times. Secondly, we allow for possible jumps in the underlying continuous
time process for the spot price. Finally, we allow for additional microstructure noise
that implies that observed returns are not necessarily equal to those in the struc-
tural model. In this way we get a discrete time model implied by the jump-diffusion



observed at random frequencies. We are able to calculate explicitely conditional
moments in some relevant cases. By the way, a general methodology of building
moments well-suited for inference in this type of data has been recently proposed in
Duffie and Glynn (1997). These moments are then used to construct estimators for
the parameters of interest in the model in traditional ways.

2 Stochastic volatility and unequally spaced ob-
servations

In this section we consider the unequally spaced transaction dates to be determinis-
tically fixed. As mentioned in the introduction this is an unrealistic assumption but
the results should be interpreted as a modellization of the transaction prices condi-
tionally on the observed dates. Starting from a model specified in continuous time,
we will derive (following the ideas put forward in Meddahi and Renault (1997) for the
equally spaced case) first and second order moment conditions that easily allow for
estimation. For convenience, we will restrict attention in this section to modellization
of the processes within a single day. The pecularities that arise in the closure-to-open
period of the markets will be discussed shortly in Section 4. In that section we will
also consider additional noise on the observed prices that are a consequence of market
microstructure effects. The present section ignores this as well, thus assuming that
the observed high-frequency returns come from the specified price dynamics.

Let t,t,...,t;,...,t, denote the time stamps of n subsequent transactions'. As
mentioned above, these will be considered to be fixed, but the durations z; :=t; —t; 1
will not be assumed to be constant. In contrast to related literature we start from
a continuous time specification of the underlying price process S. It is precisely the
irregularity in the transaction dates that makes a continuous time model a natural
choice. We will assume that the underlying prices S can be described by

legSt = /,Ldt+0't_st, (21
do} = k(0 —o} )dt+dK;,

[\
~— ~—

where 4 € R, k > 0, and # > 0 are constants, L is a Lévy process, and K is an
arbitrary local martingale. We allow for possible jumps in both the price process as
well as the volatility. The driving processes L and K will largely remain unspecified.
In that sense we take a semiparametric point of view, and our interest lies in the mean
return g and the mean-reversion parameters of the volatility. We only make some
regularity assumptions on L and K, e.g., we will assume that K is such that (2.2)
allows for a strictly positive solution. Moreover, we will assume sufficient integrability
properties for L and K such that the expectations to be derived below exist. We will

! The reader will easily be convinced that the main ideas of the paper also apply when modelling
quotes or other irregular spaced financial data.



not make these assumptions explicit as they can be found in any standard textbook on
stochastic integration (like, e.g., Protter (1995)) and are not very restrictive. We will
denote by F; := o(L,, K, : u < t) the filtration generated by the driving processes
L and K.

We assume that the prices S are observed at the dates tq,...,¢,. This means that
we observe the returns

t;
Yy, -= log (Sti/StH) = ux; +/t oudL,. (2.3)
i—1

The volatility of these returns is described by (2.2). The important assumption that
we make here, is that the volatility process exhibits linear mean reversion. As is well
known, (2.2) implies

dexp(kt)(o? — ) = exp(kt)dK;, (2.4)

and hence, under sufficient integrability conditions on K,
E (07,4 71) = 0 + exp(—rh) (o7 — 0) . (2.5)

As a consequence, the innovation in the returns y,,, i.e.

t;
€y, 1= oudL,, (2.6)

ti—1
satisfy, using that the compensated quadratic variation of L equals time,

Var (4| 7y ) = /ti E (o2

ti—1

= Oz; + c(kz;) (07 _, — 0)s, (2.7)

Firy) du

where ¢(v) := (1 — exp(—v))/v. Note that ¢(v) &~ 1 for small v, which will be very
useful in interpreting the following results. For instance, it shows that the variance
of the innovations is approximately equal to Ji_lxi, which is intuitively appealing.
This approximate linearity leads us, following Engle (1996), to study the discrete
time behaviour of the volatility per time-unit, i.e.

ft,_, == Var (5t¢| ]’ti_l) ;. (2.8)

Note that, somewhat in contrast with the GARCH literature, the volatility per time-
unit over the interval (¢;_1,¢;] is denoted by f;,_, and not by f;,. We will follow the
convention that variables with index ¢;_; are always J;, , measurable and usually not
Fi,-measurable.

Following Meddahi and Renault (1996), observe that (2.4) implies

exp(kt;) (afi - 0) = exp(kt;_1) (JEH — 0) + /ti exp(ru)dK,.

ti—1



The linear relationship between f,, , and o7_, i.e.
fii =0+ clkzi)(of_, = 0),
implies that

f, = 0+ eXP(_’Wi—l)%(fti_z —0) + c(kx;) /ttz;l exp(—k(ti1 — u))dK,

= W + ’Yifti_Q + Vg1 (29)

where

wi = 0 (1 - exp(—mi)M> : (2.10)

c(kx;i 1)
_ o clkm)
v = exp( sz_l)ic(/mi_l)’ and (2.11)
ti—1
Uy, = c(m:i)/ exp(—£(ti1 — u))dK,. (2.12)
ti—2

Under sufficient integrability conditions on K, we have that E (l/ti| .ﬂi_l) = 0, so that
f1; follows an autoregressive structure. Hence, by definition, the innovations ¢;, follow
a SARV (Stochastic AutoRegressive Volatility) process. This SARV structure can be
used to derive moment restrictions, which in turn can be used to derive estimators
for the volatility parameters. This will be discussed next.

The problem in deriving these moment conditions are the unobserved volatilities
per time-unit f;,. The linear autoregressive structure for f;,, however, implies that
also the conditional variance of e, given F , is linear in f;, ,. Hence, both ¢,
and &;,_, have volatilities conditional on F;,_, that are linear in f;, ,. Taking an
appropriate linear combination of ¢;, and €;,_, then yields a conditional expectation
zero quantity on F;,_,. This is of course a method that can be used in general with
linear moment restrictions in unobserved factors. A similar interpretation is along
the following lines (compare Meddahi and Renault (1996)). Note that

E (‘5%1/371 Ei—Z) = E (fti—l fti—z)
= w;+ %ftifza and
E (‘S?i_1/xi—1‘ Ei—Z) = fti—z'

This yields the conditional moment restriction
E (63,-/3%‘ — Wi — %52,1/%4‘ Ei_Q) = 0. (2.13)

This equation can be used in a straightforward way to derive GMM estimators for the
volatility parameters 6 and . In Section 4 we will use equation (2.13) to derive a sim-
ilar moment condition in case prices are observed with an additional microstructure
noise.




It is possible to derive conditions under which the above SARV structure, simpli-
fies to a semi-strong GARCH model. Allthough we will not impose these additional
conditions in the remaining sections, it is insightful to consider this case in order to
compare our results with other results in the literature. Suppose that

fti—l = W + 'Yz'fti_z + Vti—l
= w;+ aﬁi,l/xi—l + Bifti_as (2.14)

i.e. suppose that we are in the semi-strong GARCH framework. Taking conditional
expectations with respect to F;, ,, we find that v; = o; + 3; and hence

Vi = ai(gi_l/xi—l - fti—Z)'

This shows that the semi-strong GARCH case occurs if and only if in the M A(1)
decomposition of the (here assumedly covariance stationary) process

ep /v —wi —vigr_ Jvioe = (ef/xi— fu ) = vilel /i = fus) T vy,
= (‘Si/xl - fti—1) - ﬁi(‘si_l/xi—l - fti—2)’
in terms of &, — £;&;,_, is such that &, forms a martingale difference sequence (and
hence &, =€} /x; — fi,_,)-

It is essentially the GARCH specification (2.14) that is used in Engle (1996) and
Ghysels and Jasiak (1996). However, both papers are different from ours in significant
ways. Engle (1996) focusses indeed on the modellization of wvolatility per time-unit,
but his specification is (2.14) where the parameters w;, o;, and §; are constant over
1. Thus, this paper does not take into account the effects of temporal aggregation
on the model parameters. From (2.10) and (2.11) we see that this effect is quite
important. It is clear that it plays a role in other specifications as well. For example,
for long durations z;, the conditional volatility per time-unit over the next duration
should be close to the unconditional one. As we see from (2.9), fi, , — 6 for z; — oo.
Specifying time-invariant parameters in (2.14) assumes away this intuitively clear
effect. On the other hand, Ghysels and Jasiak (1996) does take into account the
temporal aggregation effects, but models the total variance over the next duration.
It is clear that total variances are foremost influenced by the associated duration.
For example, in their model a high variance for the current duration induces a high
volatility for the following duration, even if both durations are of unequal length.

In short, volatility over durations in a stochastic volatility setting is affected by
two things. First, of course, longer duration generally imply higher total volatility
over the duration as a result of cumulating uncertainty. Following Engle (1996),
we incorporate this by considering volatility per time-unit. Secondly, the irregularly
spaced datapoints induce (by definition) a temporal aggregation effect, as is modelled
in Ghysels and Jasiak (1996) in a GARCH framework. Intuitively, the influence of
previous volatility on current volatility depends on how long ago previous volatility
refers to, i.e. on the previous duration. We, using a stochastic volatility framework,
identify both effects by starting from a continuous time model.

7



3 Modelling transaction dates

The seminal paper Engle and Russell (1995) proposes to subsume the time depen-
dence in the durations between transactions in their conditional expectations via

%‘—1 = E(Ii|ft¢—1)’ (31)

where F;,_, denotes now the information in the processes L and K up to time ¢;_;
and the information in all time stamps t1, %o, ..., ¢;, j < i. Their so-called ACD (Au-
toregressive Conditional Duration) model specifies the observed duration as mixing
two components.

On the one hand, “standardized durations”

Vi1’

are assumed to be i.i.d. and to follow an exponential distribution of unit intensity,
ie.

Z;

(3.2)

Prob(z; < u) =1 — exp(—u). (3.3)

It is worthwhile to notice that Engle and Russell (1995) proposes more generally to
introduce an additional parameter A such that 7} is conformable to (3.3). #; then
follows a Weibull probability distribution. A < 1 (resp. A > 1) allows one to capture
decreasing (resp. increasing) hazard functions (see also Engle (1996) for evidence of
a decreasing hazard function with A ~ 0.8). For sake of notational simplicity, this
additional degree of freedom is not considered in this theoretical section; the shape
of the hazard function will be discussed in the empirical section. On the other hand,
by a natural adaptation of the GARCH(1,1) idea, Engle and Russell (1995) proposes
the following dynamics for the expected conditional duration

Vi1 = d+ az;_ + bipis. (3.4)

Note that, in contrast with the GARCH and ACD literature, but according to
our notations for the stochastic volatility process in Section 2 above, the expected
conditional duration at time ¢;_; is denoted by v;_; and not by ;. Ghysels, Gourier-
oux, and Jasiak (1998) (GGJ hereafter) have, among others, recently stressed that,
concerning the above model, the “most obvious and serious drawback (...) is the
assumption that the dynamics of the conditional distribution is entirely channelled
through the single factor” ;_;, that is through the conditional expectation. They
propose the concept of SVD (Stochastic Volatility Duration) model as a solution to
this drawback. Indeed, it is worthwhile to systematize the GGJ criticism and to
enrich the ACD model in five stages which are described below.

First, we will show that the ACD specification (3.4) is too restrictive with respect
to a dynamic factor duration modelling in a “Stochastic Volatility” style, in the
same way that Meddahi and Renault (1996) have shown that a convenient weakening
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of the GARCH concept (in the spirit of weak GARCH processes a la Drost and
Nijman (1993)) leads to a SARV structure. A similar reasoning is along the following
lines (compare Section 2 above). If one starts from the maintained assumption of an
autoregressive conditional duration

VYio1 = E(z|F,_,) = d+ cthi_g + mia, (3.5)

where
E(ni—1|f;fi—2) = 0’ (36)

one remains true to the genuine meaning of the term ACD but relaxes signifi-
cantly (3.4). To see this, note that

E(:I/‘z‘ﬂl—Q) = E(E[x1|ft¢—1”ﬂz—2) = E(wi—1|ft¢—2)
= d+ sz'_g =d+ CE(xi—l‘Ei_2)-

This yields the following conditional moment restriction for conditional durations
(which is the exact equivalent of (2.13) for volatility dynamics)

E(LL'Z —d— CLL'Z'_1|.7:1§Z._2) =0. (37)

This equation can be used in a straightforward way to derive GMM estimators for
the conditional duration parameters ¢ and d. Indeed, (3.7) is a stochastic volatility
type conditional duration model while it is easy to check that the ACD case (3.4)
occurs if and only if, in addition to the M A(1) decomposition of the (here assumedly
covariance stationary) process z; — d — cx;_; (implied by (3.7))

T —d—cximg =& — b&_1, (3.8)

the innovation process & is a martingale difference sequence (and the coefficient b
in (3.8) coincides with b in (3.4)). Indeed, &; is a martingale difference sequence if
and only if & = x; — ;_1 and thus

Ti—d—cri1 = (x;i—Yi1) — (@i —Yi2) +nia
= (l"z - %‘—1) - b(l“i—1 - %‘—2),

which implies
N1 = a(Tio1 — Yi—z), (3.9)

where ¢ = a + b. In turn, (3.9) jointly with (3.5) provides (3.4).

Equation (3.5) can be thought of as being generated by a continuous time dif-
fusion, much in spirit of the time-deformation literature. In order to see this, let Z
follow a non-negative continuous time diffusion process with linear mean-reversion,
like

A7, = k1 (0, — Z)dt + 6Z2dW?), (3.10)

9



with appropriate conditions on k1, 6;, §, and A to ensure non-negativity of the solu-
tion. If we define the transaction times t; by ¢, = 0 and

tz' :/ stS,
0

we obtain i
T; = tz — ti—l = stS.
i—1

By the same calculations as in Section 2 one finds
s+h
Zsin = 01(1—exp(—/ﬁh))+exp(—mh)Zs+exp(—mh)/ exp(r1(u—s))3ZydW?,

so that expected durations follow

Yior = E(@i|F, ) =c(k1)Zi1+01(1 — c(k1))
vy = 01(1 —exp(—k1)) + exp(—r1)W;i_1 + v;,

where, again, c(v) = (1 — exp(—v))/v and v; is a martingale difference sequence of
innovations. Note that the specification (3.10) is only essential with respect to the
mean-reversion part. Otherwise, along the same lines, heteroskedasticity with and
without leverage effects, etc. can be included without much problems.

Even though the more restrictive ACD model has been enriched by reducing the
specification of the dynamics to the basic AR(1) structure (3.5), it remains true that
this linear dynamic specification is somewhat arbitrary for a nonlinear variable as a
duration. Therefore, in the framework (3.1)-(3.3), one should preferably replace (3.5)
by

Fii=d+cFis+ni1, (3.11)

where the 7; are i.i.d. and normally distributed with zero mean and variance o2, and

Vi1 = —log[l — @(Fi_1)], (3.12)
d(u) = exp (—u2/2) /2.

In other words, v; 1 is directly related to a Gaussian factor F; ; (which is conformable
to linear AR(1) dynamics) through a natural monotone mapping between the real
line and its positive part. The duration clustering will be captured by the persistence
parameter c of the AR process while for a given ¢, d and o2 are one-to-one related to
the unconditional mean and variance of the conditional duration process ;. Such an
approach can be compared with what GGJ (1997) have termed a Stochastic Volatility
Duration Model. They propose to define the volatility dynamics by

z = Aog[l — ¢(F})], (3.13)

10



where F; is a Gaussian AR(1) factor whose unconditional distribution is standard
normal and ) is given real number?. The basic motivation of (3.13) is that, since by
inversion of (3.3), H(u) = — log(1 —u) is the quantile function of the exponential dis-
tribution with unit intensity, z; = —AH (¢(F;)) will follow an exponential probability
distribution with parameter (—1/X). This latter distribution is unconditional which
means that one has to translate the dynamics of F; in terms of the conditional distri-
bution of z; given F;, . This is the reason why we prefer to remain true to a genuine
stochastic volatility type framework like (3.1)—(3.3) completed with (3.11)—(3.12) in
order to take into account the intrinsic nonlinearities of duration data.

On the other hand, GGJ stress that “empirical results based, for example, on
the intratrade times on the stock markets suggest on the contrary, existence of dis-
tinct dynamic patterns of the conditional mean and dispersion as well as different
degrees of temporal dependence (...) To accomodate this complex duration pattern
clearly at least two time varying parameters are required. Each parameter could
represent one conditional moment, i.e. the location (or the mean) and the dispersion
(or the variance)”. But, while GGJ are led to introduce this second time-varying
parameter through a gamma heterogeneity factor (i.e. a time-varying A in (3.13)),
our setting (3.11)—(3.12) provides an alternative way to introduce not only dynamics
in the conditional mean (E(F;_1|F;, ,) = d+ cF;_3) but also dynamics in the condi-
tional variance. In order to do this, we have just to equip the innovation process 7;
of F; with a ARCH or SV structure. For instance, the simple ARC H(1) approach
will consist of replacing the i.i.d. assumption on 7; by

T]i|.7:ti_1 ~ N(O, A + B(.Fi_l — d — CE_Q)Q). (314)

With such a model one may capture the following two stylized facts: On the one
hand a high expected duration v; ; at time ¢; ; corresponds to a high underlying
factor F;_; (see (3.12)) and in turn (if 0 < ¢ < 1) will lead to forecast high F; and
1;, that is high expected duration for the consecutive transaction period. On the
other hand, there is a volatility clustering effect in consecutive durations as in the
underlying AR(1) — ARCH(1) factor.

Our fourth point is about temporal aggregation issues in the duration modelling.
One may wonder why we have neglected this temporal aggregation effect that we
stressed in Section 2 above. While we noticed in Section 2 (see (2.11)) that the
persistence coefficient 7; concerning dates t;,_» and ¢;_; was (since c¢(v) &~ 1) exponen-
tially decreasing with the duration ¢;,_; — ¢;_o, this effect has not yet been taken into
account here for the persistence in the mean (fixed coefficient ¢) and in the variance
(fixed coefficient B). This effect can easily be taken into account but one should note
that there are two kinds of persistence coefficients with two different interpretations.
Let us for instance consider the following enrichment of the model (3.11)

Fi=d+ (0" Fiy + 1. (3.15)

2An additional gamma, heterogeneity is introduced later; see below.
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The two persistence coefficients ¢ and ¢ have then the following interpretations.
On the one hand, large ¢ means, as above, that a large expected duration E(z;|F,_,)
at time ¢; _; leads one to forecast at this time a large expected duration for the period
(ti,tiz1]. This is the well-documented duration clustering effect. But, on the other
hand, if one has effectively observed at time ¢; a large realized value of z;, we will
consider that what was to be expected at time ¢;_; (far in the past) should be to
a large extent forgotten and the expected duration F; for the next period (%;, ;1]
is then unpredictable. By the product c¢(¢)*, these two antagonist effects are both
taken into account in an identifiable way. In particular one may test c=1or¢é¢ =1 to
check if only one effect among the two is present. The same type of trade-off between
two kinds of persistence may also be imagined for the conditional variance process
defined by (3.14).

An implicit assumption which is maintained in all the interpretations above is
the stochastic independence between the various innovation processes. In practice,
this independence may be questioned and some interpretations have to be modified
slightly in case of rejection. First, leverage effect as stressed by Black (1976), that
is instantaneous (negative) correlation between the innovation processes K and L of
the price process and the volatility process, may matter for the volatility dynamics.
Meddahi and Renault (1996) have shown how leverage in the underlying continuous
time SV model produces leverage effect in the discrete time model. Their work is
easily extended to the case of irregularly spaced data. Secondly, since the transaction
dates model of Section 3 is analogous to a stochastic volatility model, some kind of
leverage effect might also be considered here. More precisely, a non zero correlation
between Z; (in (3.2)) and 7; (in (3.11)) may explain that abnormally long or short ob-
served durations have an asymetric effect on future conditionally expected durations.
But the most important challenge in transaction data modelling is the evidence of
causality between asset returns and durations, which imply that the strong exogene-
ity of these durations has to be questioned. In that case, the model of Section 2
which was interpreted as a modellization of the transaction prices conditionally on
the observed dates does no longer provide a sequential factorization of the likelihood,
since future durations matter in the conditioning information of returns. This lack
of exogeneity poses some serious challenges for statistical inference, particularly for
indirect inference a la Gourieroux, Monfort, and Renault (1993). Indeed, this is the
only case where our model is not easy to simulate and could not be easily estimated.

4 Modelling microstructure noise

The previous sections propose a modellization of the transaction times and, condi-
tional on these dates, a modellization of the observed returns. Uncertainty in the
transaction times is one of the important aspects of transaction data. A second im-
portant effect is microstructure noise. Before we continue to study the effects of this
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on the derived moment conditions, let us discuss in some detail what we mean by
this.

In our opinion, modelisation of asset prices is significantly different for high fre-
quency (i.e. intraday returns) and low frequency (i.e. daily or lower returns). For
instance, the simple GARCH(1,1) model is known to provide a good description of
day-to-day or lower returns. It is also known that this model does not describe well
intraday returns. In that sense, there seem to be quite different dynamics for intra-
and extra-day returns. Our goal is the estimation of the continuous time model (2.1)-
(2.2). This model is based on low-frequency considerations for which it is known to
perform quite well. On the other hand, it seems reasonable to estimate continu-
ous time models using observations at the highest frequency available, i.e. using all
transactions. But, as mentioned above, it would be heroic to assume that (2.1)-(2.2)
would also accurately describe intraday returns. We therefore view (2.1)-(2.2) as a
description of the long term evolution of asset prices, and assume that the observed
transaction prices S equal the long term ones S plus an additional noise M. Hence,
M describes short term intraday effects and will be assumed to be independent over
distinct days.

In order to distinguish the different days, we will adopt a slightly adapted notation
in this section. We will write S;(u) for S;,,, where the integer ¢ denotes the number of
the day and u € [0, 1) the within day time. Let N; denote the number of transactions
on day 3. We will assume that these transactions take place at (intraday) times 7,
1 =1,..., N;. The microstructure noise will be modelled by a sequence of Gaussian
processes My = (My(u): 0 <wu < 1). As mentioned before, the processes M,(-) are
assumed to be independent for distinct days t. Moreover, we will assume that the
processes M, (-) are Gaussian with mean function m : [0,1) — R and covariance
c:[0,1)x[0,1) — R. Finally, we assume that the microstructure noise is independent
of L and K.

The observed transaction price for the i-th transaction on day ¢ is then given by

St(th') = St(Tti) exp(Mt(m)). (4-1)

The observed return for ¢t + 7 ; ; to ¢t + 7; hence equals

Gi(i) = log (Su(mi)/Si(mi-1))
= px(2) +e4(2) + My(135) — My(Tpi-1), (4.2)

where (i) = 7; — 7;—1 and

6,5(2):/ Z Ut+ust+u- (43)

t,i—1

3Tt will be clear that, while we use a day a unit of time this is completely unessential for the
results in the paper.
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Note that this implies that m is only identified up to affine terms in u. The con-
stant is not identifiable because we the observed returns contain differences of the
microstructure noise. Linear terms cannot be distinguished from pu. Therefore, we
need the identifying constraints

/01 m(u)du = /01 um(u)du = 0. (4.4)

For the moment we will consider the mean function m and the covariance kernel
¢ to be completely unspecified. It is clear, that in that case m and ¢ can only
be consistently estimated if the number of days for which all returns are observed
converges to infinity. If one is ready to make parametric assumptions about m and ¢,
this is no longer necessary. To estimate the parameters in (2.1)-(2.2) and m and ¢, we
will derive moment conditions based on the observed returns ¢;(7) and the transaction
dates ;. Let .7:}(1) be the information in the processes L and K up to time t + 73,
in My(u),...,M;—1(u) for 0 < w < 1, and in all times 7,5, j = 1,...,N,, s < t.
From (4.2) one then obtains

E (50| i = 1)) = p () + m(r) = m(7ii-1). (4.5)

This gives a moment condition that allows immediately for estimation of the mean
parameters ;1 and m. Note that only previous day prices are allowed as instruments.
If m is specified parametrically, a standard GMM estimator would do. For non-
parametric m, one would have to resort to nonparametric GMM estimators, e.g. the
kernel M-estimators introduced in Gourieroux, Monfort, and Tenreiro (1995). Equa-
tion (4.5) can also be used to obtain a simple nonparametric estimator for p and
m. Let Z;(u) be the total return on day ¢ up to time w. That is, Z,(u) = >, 9:(4)
for those ¢ for which 7;; < u. Let Z(u) be the average of Z;(u) over all trading days,
ie. Z(u) = Y1 Z(u)/T. The reader is easily convinced that Z(u) is consistent for
z(u) = pu + m(u) — m(0). Estimates for p, m(0), and m(-) can be obtained from
projecting the function Z on the space of affine function. This gives the following
estimates for m(0) and p

m0) ] [ fidu fyudu ! JozZu)du 1 [ 4 -6 ) Z(u)du
£ | fyude [ uldu Jyuz(u)du |~ | =6 12 Jo uz(u)du |-
The function m is then estimated by the residual of this projection, i.e. m(u) =
z(u) — ju+ m(0).
To obtain estimates for the variance parameters 6, , and c(-, -), we need a condi-

tional variance condition for the observed returns g;(i). Observe that (4.2) and (2.8)
imply that (with the obvious notation f;(7))

Var (§()] F(i — 1)) = foli—1)ae(i) + (75, 7) + ¢(Toio1, Toim1) = 26(T4i, Tri-1), (4.6)
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so that ~
B (5:(0)?| (i — 1)) = fi(i = D)2e(3) + as(i)2:4(3), (4.7)

where

ar(1)24(i) = (T, Ti) + (Tri1, Tric1) — 26(T, Toimr) + [122(8) + m(70) — m(73-1)])° -

(4.8)
Essentially we obtain the same structure as in Section 2, but for the additional and
observable term a;(7). Using the same idea, we observe

B (52| Fi(i — 2)) = [wi + % — 2)]24(3) + a,(3)z4(3). (4.9)

Therefrom, we obtain the second order moment condition

E (:(0) /() — (i — 1)? /26 — 1)| Foli = 2)) = w; + a(i) — yiau(i — 1). (4.10)

Note that, for the estimation of the structural parameters € and k, the moment
condition (4.10) can be used, with instruments from the previous day. At first sight,
it might seem inefficient not to be able to use returns of the prevailing day. On
the other hand, the structural parameters are exactly defined to describe the low
frequency (i.e. day-to-day) returns. In that respect, it is only reasonable to use
previous day returns as instruments.

In this section we derived first and second order moment conditions that easily
allow for GMM-type estimators for the parameters of interest. These estimators
are based on intraday returns. As mentioned above, in the fully nonparametric
setting for the microstructure noise, it is necessary that the number of observation
days converges to infinity in order to be able to construct consistent estimators.
In a parametric setting such a condition is not necessary. The above discussion
did not take into account the problems arising when considering non-trading hours.
During market closure, many interesting effects occur. However, in order to keep the
empirical analysis tractable, we chose not to model these effects seperately. In the
empirical section, overnight returns are therefore simply excluded from the moment
conditions.
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