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Abstract
In this paper, we derive explicit formulas for conditional and unconditional mo-
ments of the continuous time Eigenfunction Stochastic Volatility (ESV) models of
Meddahi (2001). Special cases of ESV models are log-normal, affine and GARCH
diffusion models. The conditional moment restrictions we derive are based only on
observable variables. Therefore, using an instrumental variable approach is easy. A
major advantage of this approach with respect to other methods (e.g., simulation
techniques) is that one can use extra variables as instruments, in particular Black-
Scholes implied volatilities (without specifying a price of risk) and high-frequency
realized volatility. Moment conditions are also useful for statistical inference pur-
poses. This is of interest given that we observe many financial derivative prices.
Therefore, one can test which features of the model are or are not compatible with

financial derivatives.
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1 Introduction and motivations

In this paper, we derive explicit formulas of several moments of continuous time
stochastic volatility models, including Log-normal models of Melino and Turnbull
(1990), the square-root model of Heston (1993), the affine models of Duffie, Pan
and Singleton (2000) and the GARCH diffusion model of Nelson (1990). These
models are special cases of the general framework considered in a companion paper,
Meddahi (2001), and termed Eigenfunctions Stochastic Volatility (ESV, hereafter)
models.! This class is characterized by the fact that the variance process is assumed
to be a linear combination of the eigenfunctions of the infinitesimal generator of
the state variable governing the model. We derive unconditional moments, centered
and noncentered, the covariance structures of the returns, the squared returns, and
the covariance between the returns and the squared returns, which is a measure of
skewness and leverage effect. Such moments are useful for inference purposes by the
Generalized Method of Moment (GMM) of Hansen (1982).

The most popular inference methods in the stochastic volatility literature are
those based on simulation techniques.? The reason is that the variance depends on
an unobservable state variable and hence non-simulated methods need (numerical)
integration, which is difficult in the discrete time case (e.g., Danielsson and Richard,
1994) and unfeasible in the continuous time case.® Simulated methods estimation
of continuous time SV models include the simulated method of moments (SMM)
of Duffie and Singleton (1993), the Indirect Inference (II) of Gouriéroux, Monfort
and Renault (1993) and the Efficient Method of Moments (EMM) of Gallant and

LFor a review of volatility models, see Bollerslev, Engle and Nelson (1994), Ghysels, Harvey
and Renault (1996) and Shephard (1996).

2There are many estimation methods in the literature for continuous time models: the GMM
of Hansen and Scheinkman (1995) for equally spaced data and the extension to unequally spaced
data of Duffie and Glynn (1997); the regression-type nonparametric methods of Ait-Sahalia (1996),
Stanton (1997) and Bandi and Phillips (1999); the eigenfunction-type nonparametric methods of
Darroles, Florens and Gouriéroux (1998) and Chen, Hansen and Scheinkman (1998); the maximum
likelihood approximation approach of Ait-Sahalia (2002); the Bayesian methods of Elerian, Chib
and Shephard (2001), Eraker (2001) and Jones (1998). In the specific affine models of, e.g., Duffie,
Pan and Singleton (2000), estimation techniques based on the characteristic function are developed
by Chacko and Viceira (1999), Singleton (2001) and Carrasco et al. (2001).

3In the affine case, Chako and Viceira (1999) integrate over the state variable by neglecting the
dependence between the variance and the observables wich is, in general, a strong assumption. The
Bayesian methods may potentially be extended to the SV case. Indeed, Eraker (1998) does this.
However, the variance is assumed to be log-normal and extension to general SV case is unclear.
Finally, Hansen and Scheikman (1995) method can be applied to subordinated observation which
is a specific SV-type modeling; see the application to interest rates by Conley et al. (1997).



Tauchen (1996); For a review of simulated methods in financial econometrics, see
Gouriéroux and Monfort (1996), and Tauchen (1997).

A potential limitation of the GMM based on ad hoc unconditional moments is
their finite sample properties. In particular, Jacquier, Polson and Rossi (1994) and
Andersen and Sorensen (1996) show (by Monte Carlo experiments) that for discrete
time log-normal SV models, the finite sample properties of the GMM estimators are
poor especially when the number of moments is high (Tauchen, 1986). Moreover,
Andersen, Chung and Sorensen (1997) show that the EMM estimators dominate the
GMM ones in the discrete time log-normal SV model, while Gallant and Tauchen
(1999) show it for some continuous time models. However, there are many reasons
why deriving GMM estimates are useful. We give six reasons.

i) The aforementioned simulated methods need a starting value of the unknown
parameter in the simulation experiment. Since these methods are time-consuming,
especially in the multivariate case, a GMM estimator may be used.

ii) The main problem of the GMM estimators is that they have a finite sample
bias. However several reduced bias techniques are available: the continuous updating
GMM of Hansen, Heaton and Yaron (1996) and the recent literature on empirical
likelihood methods (e.g., Kitamura, 1997); see Newey and Smith (2000).

iii) The performance of IT and EMM (as well as the other methods) in the multi-
variate case is not very clear. To the best of our knowledge, there is no application of
IT in the multivariate case while EMM is done only with two variables (e.g., Gallant,
Hsu and Tauchen, 1998) or three variables (Dai and Singleton, 2000). However,
the GMM method adds no difficulty in the multivariate case. Indeed, recently,
Bakschi, Cao and Chen (1997), Benzoni (2000) and Chernov (2000) among others,
consider multivariate models and use the SMM of Duffie and Singleton (1993) for
the inference.

iv) IT and EMM provide diagnostics based on the estimation of the auxiliary
model. However, additional diagnostic tests may be useful, to see, for instance,
what are the characteristics of the data (not considered in the auxiliary model) that
the structural model captures well or no. It turns out that GMM provides easy
diagnostics by using the M-tests of Newey (1985) and Tauchen (1985). Observe also
that with explicit formulae of the moments, one can also use diagnostics as in Das
and Sundaram (1999).

v) Using the GMM method is very useful for robustness against misspecification.

As advocated by Conley, Hansen and Liu (1997), it is important to do inference



based on the steady-state distribution (i.e., the long-run), which is typically related
to some unconditional moments, for instance the first marginal moments. The
reason is that all the considered models are approximation of the reality. As a
consequence, developing robust inference methods for estimating some parameter of
interest may be useful. It turns out that the ESV models of Meddahi (2001) have
some interesting robust properties. More precisely, some marginal moments as well
as some correlations of the returns and the squared returns are the same for many
models. For instance, while the state variable that governs the variance process may
be an Ornstein-Uhlenbeck process or a square-root one, some moments are the same.
As a consequence, one can estimate by GMM the parameters identified by these
moments robustly against potential misspecification. However, II of Gouriéroux,
Monfort and Renault (1993) and EMM of Gallant and Tauchen (1996) use all the
feature of the model. Therefore, a priori, they are not robust to misspecification
(see however, Dhaene, Gourieroux and Scaillet, 1998, Dridi and Renault, 2000, and
Gallant, 2002).

vi) We also derive conditional moment restrictions. These conditional restrictions
are based on observable variables only. More precisely, we derive multi-period con-
ditional moment restrictions (Hansen, 1985). As a consequence, one can use the op-
timal instruments developed in that case (Hansen 1985; Hansen, Heaton and Ogaki,
1988; Hansen and Singleton, 1996). More importantly, one can use extra variables
as instruments, in particular Black-Scholes implied volatilities, without specifying
a price of risk. This is of interest given that we observe many financial derivative
prices. Therefore, one can test which features of the model are or are not compatible
with financial derivatives. Potential other instruments are high-frequency realized
volatilities (see Andersen, Bollerslev and Diebold, 2001, and Barndorff-Nielsen and
Shephard, 2002), range observations, volume of transactions, etc. This reason is
the major advantage of the GMM approach with respect to other methods (e.g.,
simulation techniques).

Computing moments of continuous time SV models is already considered in the
literature in some cases. To the best of our knowledge, it is done only in the affine
case, by Das and Sundaram (1999), and Pan (2001). Das and Sundaram (1999)
compute the four first moments for the Heston model without leverage effect. Pan
(2001) computes conditional moment restrictions based on returns and unobservable
volatility in the square-root model with leverage effect and jumps. Pan (2001) uses

the options data in her inference since the information contained in the stock returns



and the variance process is the same that the one contained in the stock returns and
the options data. Both Das and Sundaram (1999) and Pan (2001) compute the
generating function of the bivariate vector of the returns and the variance processes
and then derive the moments. A crucial assumption in their framework is that the
model is affine, i.e. all the drifts, variances, covariances and jump-intensity are an
affine function of the variance process assumed to be a square-root process. An
additional assumption in Pan (2001) is that all the risk premia functions are affine
functions of the variance. However, in our framework, we do not need that the
variance process is a square-root model. Moreover, in this case, the drifts, variances,
covariances, and risk premia may be non-linear functions of the variances. We need
square-integrable functions.

We compute the moments by expanding some functions onto the eigenfunctions
of the infinitesimal generator of the state variable driving the volatility. Kessler
and Sorensen (1999) used the same approach for scalar diffusion models. Thus,
our results are a generalization of Kessler and Sorensen (1999) to the stochastic
volatility case. In addition, Sorensen (2000) proposed an estimating function method
to estimate scalar diffusion models by using Kessler and Sorensen (1999). Estimating
function method is very close to the GMM.

The paper is organized as follows. In section 2, we recap the main properties of
the ESV models of Meddahi (2001). In the third section, we compute the moments
for the model without leverage effect while the fourth section deals with the leverage

case. The last section concludes, while all the proofs are provided in the Appendix.

2 Eigenfunction Stochastic Volatility Models

In this section, we recap the main properties of the Eigenfunction Stochastic Volatil-
ity (ESV) models introduced in Meddahi (2001). These models provide a convenient
tractable framework, where many well-known models can be represented and in
which analytic calculations can readily be performed. We will give a brief introduc-
tion to the general class of models, before indicating how common volatility models

can be rewritten in this form.

2.1 General theory

The most popular stochastic volatility models like log-normal (Hull and White, 1987;
Wiggins, 1987), square-root (Heston, 1993) and GARCH diffusion (Nelson, 1990)
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models have the following form:

dlog(S;) = mydt + oy [\/1 — p2th(1) + det(Z)], with (2.1)
ar = g(fo).

Here f; is a state variable with simple dynamics that is characterized by
dfs = p(fi)dt + o (f)dW?; (2:2)

¢g(.) is a known and ad hoc function; and Wt(l) and Wt@) are two independent stan-
dard Brownian processes. In particular, we can represent:
1- Log-normal model: o? = exp(f;), df; = k[ — fi]dt + O'th(2);
2- Square-root model: of = f,, df; = k[0 — fi]dt + U\/ﬁth@);
3- GARCH diffusion model: 02 = f,, df, = k[0 — f]dt + o f,dW .

Instead of taking an ad hoc function g¢(.), Meddahi (2001) proposes a flexible
functional approach. More precisely, he assumes that the variance process o7 is

given by

of =Y a;Ei(fy), (2.3)
=0

where p is an integer, potentially infinite; a;, ¢ = 0,...,p, are real numbers; and
E;(f:) are the eigenfunctions of the infinitesimal generator associated with f; see
Hansen, Scheinkman (1995) and Ait-Sahalia, Hansen and Scheinkman (2001) for a
review.

We now recap the definition of this operator and some related properties. Let A be

the infinitesimal generator operator associated with f;:

_ / U2(ft) "
Ad(fr) = p(f) o' (fr) + 5 ¢ (fi), (2.4)
where ¢(f;) is a square-integrable function and twice differentiable. Let E;(f;),
i = 0,1,..., be the set of the eigenfunctions of A with corresponding eigenvalues
(—51), i.e.

Here, we assume that the eigenvalues are real numbers and that the spectrum, i.e.

the set of the eigenvalues, is discrete:



Assumption A1l. The stationary process {f;} is time reversible.

Assumption A2. The spectrum of the infinitesimal generator operator A of {f;} is
discrete and denoted {—¢;,7 € N} with 0 = 0 and 0y < 67 < 02 < ... < & < ip1..+;
the corresponding eigenfunctions are denoted FE;(f;), ¢ € N.

Hansen, Scheinkman and Touzi (1998) show that under some appropriate boundary
protocol, stationary scalar diffusions are time-reversible. Hence, assumption A1l is
not restrictive when one considers a volatility model that depends on one factor. It
is, however, when one considers a multivariate vector f;. This assumption is ensured
when the factors are independent as in the volatility literature. Assumption A2 is
true for both log-normal and square-root models but not for the GARCH diffusion
model. A sufficient assumption that ensures A2 is that the operator A is compact.

The eigenfunctions have some interesting properties:
i) two eigenfunctions E;(f;) and E;(f;) associated with two different eigenvalues are

orthogonal, and any nonconstant eigenfunction is centered:
E[Ei(f,)E;(fi)] = 0 and E[E;(f,)] = 0; (2.6)

ii) any eigenfunction is an autoregressive process of order one, in general het-

eroskedastic:
Vh >0, E[E;i(fiin) | fr, 7 < t] = exp(=0d;h)E;i(f3); (2.7)

iii) any square-integrable function g, i.e. E[g(f;)?] < oo, may be written as a linear

combination of the eigenfunctions, i.e.

o0

o0
g(f) = _aEi(f)) where a;=E[g(f)Ei(f)] and Y a; = E[g(f,)] < oo.
i=0 1=0

(2.8)

Therefore, g(f;) is the limit in mean-square of > ¥ a;E;(f;) when p goes to +00.*
These three properties explain the powerfullness of the ESV approach. Consider
any function of current or future values of returns. Given the Markovian nature of
the joint process (Log(S;), f), a conditional expectation of any transformation of
this variable, like the variance, is a function of f;. Therefore, by using the third
property, one can expand this function onto the eigenfunctions. The autoregressive
features of these eigenfunctions (second property) allow for ready computation of
the dynamics of this function. Finally, given the first property, it is easy to compute

the covariance of two functions.

4Observe that we make a normalization assumption by specifying that Var[E;(f;)] = 1 for
i # 0. Likewise, we assume that Ey(f;) = 1.



2.2 Examples

2.2.1 The log-normal example

Consider the state variable f; defined by, after a normalization,
df, = —kf,dt + 2k dW 2, (2.9)

The eigenfunction associated with the Ornstein-Uhlenbeck process (2.9) are the
Hermite polynomials H; associated with the eigenvalues d; = ki. These polynomials

are characterized by

Hy(z) =1, Hi(z) =z and Vi > 1, H;(x) = H, y(z) —Vi—1H; 5(x)}.
(2.10)
Meddahi (2001) shows that the log-normal model of Hull and White (1987) and

Wiggins (1987) is an ESV model with

1
N

(o0/V2h)"

Zaz (ft), where a; =exp(0+ 4k) Vi (2.11)
2.2.2 The square-root example
Consider the state variable f; defined by, after a normalization,
. 2k0
dﬁ:Ma+LﬂMﬁ+V%wﬁﬂmeM1a:ZT—L (2.12)

The eigenfunctions associated with (2.12) are the Laguerre polynomials LEO‘)( ft)
associated with the eigenvalues d; = ki. The Laguerre polynomials are characterized
by:

1+« 12 (@) 1— 14+« 12 (o)

i—2+a\"”
—( S ) (i + o — 1)LI% (), where (2.13)

l+a—z

Vita
Meddahi (2001) shows that the square-root model of Heston (1993) is an ESV model
with

L (@) =1, L") =

Vi
V2k
Note that this is also the case for the affine model of Duffie, Pan and Singleton
(2000).

02 = agLi (f)) + a L3 (f,)  where ap =0 and a; = — (2.14)



2.2.3 The GARCH diffusion example
Consider the state variable f; defined by
df, = k(0 — f,)dt + o f.dW/ 2. (2.15)

This process was first introduced by Wong (1964) and popularized by Nelson (1990).
This process violates assumption A2. The main consequence is that in the expansion
results (third property), one has to take an integral instead of a sum. We will not
consider this approach in this paper. Instead, we assume that the variance is a
GARCH diffusion model, i.e. g(x) = z, and that the second moment of the variance
o? is finite. These assumptions suffice to do all the calculations, since the first

eigenfunction is an affine function given by

VI=\
v\

and the variance depends only on Fy and E;. Indeed, we have:

0v/A
VI=X
Note that the second moment of the variance o7 is finite when ) is smaller than one.
Andersen and Bollerslev (1998) and Andreou and Ghysels (2001) who consider this

example also assume the existence of the second moment of o7 in order to use the
weak GARCH results of Drost and Werker (1996).

Ei(z) = (x —0) where A\ =o0?/2k, (2.16)

ol = agEo(f;) + a1 By (f;) where ag=0 and a; = (2.17)

2.3 The multifactor case

Meddahi (2001) considers also the case where the variance is a function of several
factors as in Bollerslev and Zhou (2001), Engle and Lee (1999) and Harvey, Ruiz
and Shephard (1994) among others. Without loss of generality, we consider the two-

factor case. Let fi; and fy; be two independent stochastic processes characterized
by

dfj,t = /,Lj(fj7t)dt + Jj(fj,t)de,ta ] = ]_, 2, (218)

where the eigenfunctions (resp eigenvalues) of the corresponding infinitesimal gen-
erator are denoted E;(fi;) and Ey;(f2:) (resp 61, and ;). Then the variance

process o7 is defined by

o) = Z i jE1i(f1i)Faj(fay) where Z a2, < oo

0<i,5<p 0<i,5<p



It turns out that the properties of the eigenfunctions defined in (2.6), (2.7) and (2.8)
also hold for the functions E; ;(f;) defined by

Eij(fi) = Eri(fi) B (for) where fi = (fie, f2)- (2.19)
Hence, E;;(f;) are the eigenfunctions associated with the bivariate state variable
(fis fon)-”
2.4 Some notations and expansions

In the following propositions, we expand some functions onto the eigenfunctions for
computation purposes. For each case, we assume that the (L?) expansion is feasible,
i.e., the function of interest is square-integrable.

1) For a given ¢, the reals {e; ;} and p; are defined by

00 (f)E Z eijF (2.20)

where E!(.) is the first derivative of Fj(.).
2) For a given 7 and j, the reals {w; ;} and p;; are defined by

Pi,j

D =Y wijxBr(f)- (2.21)

3 The baseline model

In this section, we consider a process {y;,t € IR"} given by

dy, = oy th(l), with (3.1)

Zal (f1), pe€ NU{+OO}, Za? < 00, (3.2)

where W and W*) are two independent standard Brownian processes and Ei(f)

are the eigenfunctions of the infinitesimal generator of f; characterized by

df, = p(f) + o(fr)dw . (3.3)

5See Chen, Hansen and Scheinkman (2000) for a general approach of eigenfunction modeling in
the multivariate case.




3.1 Unconditional moments

In this section we will compute the first four moments of the returns as well as the

variance, skewness and kurtosis. We recall that, for a given random variable z, with

finite fourth moment, the later are defined by

El(z — E[z])’]
(Var[2])*?

Var[z] = E|(z — E[2))2]; Skew|2] = . Kurtls] = £

Proposition 3.1 Marginal moments
Consider {y;,t € IR} a continuous-time ESV(p) and define the returns {Tg;), t e N}

by
Tg;) = Yth — Y(t—1)h- (3.5)

Then the first four moments of rgz) are given by:

h h h
E[rgh)] =0; E[T,Ehp] = aph; E[T,Eh)?’] =0; (3.6)
p 02
Elriy)"] = 3a3h* + 6 so[=1 + 0ih + exp(=0;h)). (3.7)
i=1 1

As a consequence, the variance, skewness and kurtosis of the returns are:

p

2
Var[rg;)] = aph; Skew[rg;)] =0; Kurt[rg;)] =34+ 22 Z %[—1 + 8;h + exp(—d;h)].
aph” = 9
(3.8)
Corollary 3.1 a- When h — 0, we have
Kurt[r"] — 3 + 3== L
ay
b- When h — oo, we have
Kurt[rgi)] — 3
and
3 a1
Kurtfr™ -3~ 2§22 =
AR EP DO

10



3.2 Covariance structures

We now compute the covariance structure of the returns, their square and the cross-

covariance between the returns and their square.

Proposition 3.2 Covariance structures
Consider {y;,t € IR} a continuous-time ESV(p) and define {r™ t € N} by (3.5).

Then, we have:

. h) (h
Vi #£0, Cov[rgh),rgtzj)h] =0; (3.9)
h)2 (h)2 "~ a?
¥j >0, Coulry”, rif” ] = 26_;[1 — exp(—0;h) ]2 exp(—0;(j —1)h).  (3.10)
i=1 ¢
. n2 (h
Vj #0, C’ov[r,gh) ,rgtzj)h] = 0. (3.11)
Corollary 3.2 Let COTT[TEZ)Q,Té?zi-)h] be the correlation between rgfp and T((f_)?)h,
i.e.
(h)2  (h)2
()2 (h)2 Covlry, ", 1))
Corrlry, T yn) = Op
Varlr,,”]
a- When h — 0, we have
P2
(W2 (12 i=1 @ 1
Corrlry, ,T(t_j)h] — 20 4 3lzp p < 3

i=1 "

b- When h — oo, we have

B2 (h)2
C’orr[rﬁh) ,r((t_)j)h] — 0,

P a2/62 1
for j =1, C’orr[r(h)2 (h)2 | ~ &=l i a; /%;

r il
th > T(t=1)h 202 B2’

1
for j > 1, COTT[Tt(Zp,T((;L_)?)h] = O(E)v vn.

11



3.3 Conditional moments

We now compute the conditional moments of the returns. Let .J; be the filtration
defined by

Jy=0Wr, fr, T € R T < t) = o(dWH dW® 7 € R, T < t). (3.12)

Proposition 3.3 Conditional moments
Consider {y;,t € IR} a continuous-time ESV(p) and define {r™ t € N} by (3.5).

Then, we have:

E[ry) | T =0, (3.13)
[Tth | Jt 1)h ] = aoh + Z ]_ - exp( 6zh)]Ez(f(t—1)h)a (314)
[Tth | Ja—1yn] =0, (3.15)

p

a;
[rth | Jt Dh ] = 3a3h2 + 6ag Z ﬁ[exp(—&h) -1+ (Slh]EZ (f(tfl)h)

i=1 &

+6 Z le(R) B (fevyn) (3.16)

with

p P
ajw;jr [1—exp(—=oxh) 1 —exp(—d;h)
pu— . . ‘1
; K (; 0 — O [ 5 5 , (3.17)

p = sup{p;,1 < i}, where p; = sup{p;;,1 < j}, and w;;x and p;; are given in
(2.21).

In the previous proposition, the conditional moments where derived given the
state variable f; which is not always observable by the econometrician. We now

derive conditional moments given the information of the econometrician.

Proposition 3.4 Conditional moments based on observable variables
Consider {y;,t € IR} a continuous-time ESV(p) and define {r™ ¢t € N} by (3.5).
Assume that p < +o0, then we have:

p
E[[T0 = exp(=ain)D)[ry” = aoh] | v8) zon, 7 <t —p—1] =0,  (3.18)

=1

12



(h)2

where z.;, are any observarble variables. As a consequence, r,,’" is an ARMA(p,p)
model with autoregressive coefficients exp(—o;h), i = 1,2, ..., p.

Assume that p < +00, then we have:
P
H (1 — exp(=8;R)L)[rM* — 20282 — Io(h)] | ™) 2oy, 7 <t —p—1] = 0. (3.19)

As a consequence, T,EZM is an ARMA (p,p) model with autoregressive coefficients

exp(—d;h), i =1,2,...,p.

Typically, the instrumental variable z; may be Black-Scholes implied volatilities.
Observe that we do not need to specify the price of risk. Other possible instruments

are high frequency realized volatilities, range variables, volume of transactions, etc.

4 Incorporating leverage effect

In this section, we incorporate in the model considered in the previous section a

constant drift and a leverage effect, i.e.:

dye = mdt + /57 [T=2aw" + paw ] with (4.1)
P p

o] = ZaiEi(ft)a peN U{—l—oo}, Za? < 00, (4.2)
=0 i=0

where Wt(l) and Wt(z) are two independent standard Brownian processes and E;(f;)

are the eigenfunctions of the infinitesimal generator of f; characterized by
dfy = p(fs) + o(fr)dW . (4.3)

4.1 Unconditional moments

In this section we will compute the first four moments of the returns as well as the

variance, skewness and kurtosis.

Proposition 4.1 Marginal moments
Consider {y;,t € IR} a continuous-time ESV(p) and define the returns {Tg;), t e N}

by

Tgf) = Yth — Y(t-1)h- (4.4)

13



Then the first four moments of Tg;) are given by:
ElriY] = mh; E[ry”] = m2h? + agh; (4.5)
[rth ] = m3h3 + 3magh® + SpZ exp( d;h) — 1+ 0;h]; (4.6)

=1 Z

P2
E[r{™) = m*h* + 6m2aoh® + 3a2h6 Z %[—1 + 8;h + exp(—6;h)]
i=1

i

p
+12mph Y S22 lexp(~8;h) — 1+ ;5] + 12p%ng(h) (4.7)

[N eigein [1 —exp(—dxh) 1 —exp(—dih)

_ 1o exp(=dh) 11— eXp(—(Sz-h)D .

(0; — 0, )(5 (0; — 0,)9;
(4.8)
As a consequence, the variance, skewness and kurtosis of the returns are:
Var[rg;)] = aph; (4.9)
Skew[rth = 3,02 (—d;h) — 14 0;h], (4.10)
p 2 2
(h)y 6 a; 12p
Kurtri] =3+ pere > 5[+ 8ih + exp(—ih)] + Wno(h) (4.11)

=1 *

4.2 Conditional moments

We now compute the conditional moments of the returns. Let .J; be the filtration
defined by

Jo =0y, fr, T € R,T < t) = o(dWV, dWP 7€ R, 7 < t). (4.12)
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Proposition 4.2 Conditional moments
Consider {y;,t € IR} a continuous-time ESV(p) and define {r™ t € N} by (4.4).

Then, we have:

E[r | Ju 1] = mh, (4.13)

Eri™ | Ju ] = mh2+a0h+z 1—exp( SM)Ei(fuvn), (4.14)

[rth | Je—1yn) = m*h® + 3magh® +3mz 1—exp( 8ih))Ei(fie—1)n)

l

+3PZ d;(h)Ej(fu-1)n) (4.15)

where

"L aiei; 1 —exp(—d;h) 1 —exp(—d;h)

D = 1< < ; = - .
p=sup{p;,1 <i<p} and d;(h) 2 5 5]'[ 5, 5 ]
(4.16)
L
[rth | J1yn) = m*h* + 6m*aoh® + 6m*h? Z 5_’_(1 —exp(—6;h)) Ei(fu—1)n)
i=1

p

+3ash? + 6ag Z 5 slexp(=d;h) — 1+ &R E;(fiu—1)n)

=1 !

D
+6Zlk )Ei(fo) +12mpth] VE;(fu-vn) + 120> > nie(B) Ex(f—1yn)
k=0

7=0
(4.17)
where
P P
_ _ , ajw;jr [1—exp(—=0xh) 1 —exp(—d;h)
= . < — ) J 2] -
p=supipi L < i, u(h) ;al (j:O 0; — Oy, { O d; 7
(4.18)
P
aie;j [1—exp(—0;h) 1 —exp(—0o;h)
(h) = ’ — 4.1
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o eigein [1— exp( Oph) 1~ exp(=dih)
_ 1—exp(=d;h) 1- GXP(—@'h)})
+ .

(6; — 0 )5 (6 — 6,)6;
(4.20)

In the previous proposition, the conditional moments where derived given the
state variable f; which is not always observable by the econometrician. As is in the
previous section, it is possible to derive conditional moments given the information

of the econometrician.

5 Conclusion

In this paper, we derive explicit formulas for conditional and unconditional mo-
ments of the continuous time Eigenfunction Stochastic Volatility (ESV) models of
Meddahi (2001). Special cases of ESV models are log-normal, affine and GARCH
diffusion models. The conditional moment restrictions we derive are based only on
observable variables. Therefore, using an instrumental variable approach is easy. A
major advantage of this approach with respect to other methods (e.g., simulation
techniques) is that one can use extra variables as instruments, in particular Black-
Scholes implied volatilities (without specifying a price of risk) and high-frequency
realized volatility. Moment conditions are also useful for statistical inference pur-
poses. This is of interest given that we observe many financial derivative prices.
Therefore, one can test which features of the model are or are not compatible with

financial derivatives.
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Appendix

The propositions given in the text are special examples of the following lemmas.

In the sequel, we will consider the process Z; defined by

t t
7, = / dy, = mt +/ Vo2[V/1 — p2dWW + pd ). (A1)
0 0

and compute various conditional and unconditional moments of Z; where h is a real
number.
Before doing so, let us recall the Ito’s Formula (e.g., see Protter, 1995, page 74).

Consider X a continuous semimartingale and let f a C? function, then
h L
f(Xn) — f(Xo) = . f1(X,)dX, + 5/, [ (XW)d[X, X], (A.2)
0 0

where [X, X, is the quadratic variation of X (Protter, 1995, page 58). In the
following, we will use Ito’s formula to compute any moment of order r of Z, by

considering the function f(z) = z". Observe that

dZ, = mdu + \/2[/1 — p2dWV + pd W], (A.3)
Z, 7], = / olds and d[Z,Z], = o2du. (A.4)
0

Lemma A1l: Conditional and unconditional first and second moments. Let
h >0 and consider Z,, defined in (A.1) and Iy the information at time 0. Then we

have

E[Z), | Iy] = mh and (A.5)
2 212 - a;
E[Z; | )] = m”h” + aoh + Z 5(1 — exp(—0;h)) Ei( fo)- (A.6)
i=1 "
Hence,
E[Z;)=mh and E[Z}] = m*h? + aoh. (A.7)
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Proof. We have: E[[)' \/o2[\/T— p2dW" + pdW”] | I] = 0. Hence, E[Z, | I] =
mh and E[Z,] = mh
By using Ito’s formula (A.2), we get:
=2 [ Z,dZ, + [} d[Z
_2mf0Zdu+2f0Z\/7[\/7qu +deu] fh oldu.

Therefore,
h
[Zh|10]_2m/ Z, |Io]du+0+/ Elo? | I]du

_2m/ mudu+za,/ exp(—du)du Ei(fy)

_m2h2+a0h+zg(1—exp( 8;h)) E;(fo).

i=1 "

As a consequence, E[Z}] = m*h* + agh.®
Lemma A2: We have E|Z,Ey(f.) | Io] = mu and for i # 0:

exp(—d;ju) — exp(—d;u)
0; — 0;

E;(fo)-
(A.8)

pi
E[Z,Ei(f.) | To] = muexp(—6u)Ei(fo) + p Y _ e,
=0

Proof. We have E[Z,Ey(f,) | L] = E[Z, | Iy] = mu. For i # 0, we have:

BIZ.Fi(f.) | To) = Bl (mu + [, /o2 [\/ =W + pdW | ) Ei(£) | T
= muB[B(1) | 1l +p [} LY/ B (1) |

—5lu) (f() +pf0 \/7dWs fu | I] | IO]

Ei(fo) "‘Pfo exp(— i(u—s) \/750- (fs)Ei(fs) | Lo]ds

Ei(fo) + p [y Elexp(=0i(u — ) 325 g €1 Ej(fs) | To]ds

Ei(
(

= mu exp

+ 0250 €ig(fo exp(=0i(u — 5)) exp(=d;5)ds) E(fo)

)
pi
exp(—d;u) — exp(—d;u
diu) Ei(fo) +PZ€i,j il ]5?_ 5 ul )Ej(fO)-.
=0 Lo

Lemma A3: Conditional and unconditional third moment. Let h > 0 and

consider Zy, defined in (A.1) and Iy the information at time 0. Then we have

p
ih
E[Z} | I)] = m*h® + 3magh? + 3mz ad

(A.9)
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where

P i€ [1 — exp(—d;h) 1= exp(—éih)]

5; — 6; 5; 5 '
(A.10)

p=sup{p;, 1 <i<p} and djh)=
i=1
Hence,

azezO 1 - exp(_élh)
z 51

E[Z}] = m®h? + 3magh? —|—3pz ]. (A.11)

Proof. By using Ito’s Lemma, we get:
Z3=3[" 737, + 3 [} Z,d[Z, 7],
=3m [y Zedu+3 [} Z2\/0% [VT= p2aW (" + pdWi?| +3 [ Zuodu.
Therefore, E[Z} | Io] = 3m [ B[22 | Iy|du + 3 [, E[Z,0? | I)du.
Let us first compute the first term. We have:

h h P
3m/ E[Z2 | I)du = 3m/ (m2u2 + agu + Z —f(l - eXp(—éiU))Ei(fo)) du

2

h
= m>h® + 3may— 5 —i—3m121:62 (0 — 1 + exp(—6;h)) E;i(fo)-

Now we consider the second term. We have:
E[Zyo} | I] = 377 ai B[ZuEi(fu) | 1o]

i D exp(—d,;u) — exp(—d;u
= aomu—i—z a; (mu exp(—do;u)E;(fo) + pZei,j p(=; 6? —5 p( )Ej(fo) :
i=1 §=0 ¢ J

Hence,
2

f E[Z,02 | Iy)du = aomh + Z — d;hexp(—0;h) — exp(—d;h)]| E;(fo)

e, 1 —exp(—d,h 1 —exp(—d;h
MBI 5j( M) L= o0 g,

As a consequence,
2

h P a
E[Z} | I)) = m*h® + 3ma05 + 3mz %(&-h — 1+ exp(=d&;h))Ei(fo)

2

+3ma0%+3mz 1 i exp(~6ih) — exp(~Gh)]Ex(fy)

pPi
; 1 —exp(—d;h) 1 —exp(=4;h)
ij ,
+3p E a; E 5 mr 5 5 JE;(fo)

= m>h® + 3magh® + 3mZ 5Z (1 — exp(—0;h))E;( fo)

i
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pPi
; 1 —exp(—d;h) 1—exp(—dih)
ij ,
EOMDWCTE PO 7y,

By arrangmg the terms in the prev1ous equation, one gets (A.9). Therefore,

; 1 —exp(—=dph 1 — exp(—d;h
— 33 €i,0 p(—doh) p(—0;h)
E[Z}] = m*h* + 3mayh® +3p§ a; [ 5 — 5 ].

§; — 0
But §p =0 and exg( 5Oh) = h. Hence we get (A.11). H
Lemma A4: Fori # O we have:
pi
€.
ELZEf) | Tl = mh exp(=5) (o) +2mph Y o= (exp (=) —exp(=0ih) 5 o)
j=0 27t
P
+ZSM VE(fo) +2p Z h)Ex(fo) (A.12)
k=0
where
p
. exp(—dirh) — exp(—9d;h
pi = sup{pi;, 0 <7 <p}, six(h) = Zajwi,j,k p( k(s) 5 il ) (A.13)
s i = O
and
Z eme]k exp(—dxh) —exp(=d;ih)  exp(—d;h) — exp(—éih)] (A14)

5—5k 3; — o 5 — 0

Proof. Let i # 0. We have
E[ZyEi(fn) | Io]
=B (2m J; Zudu+ [} otdu+2 [} 2, /07 |VT=2dW + pdWi|) Ei(fu) | 1)

We have to compute the there terms.
h

VB[ Zdu Bi(h) | Bl =Bl ZE(EG) | L] 1)
- E[/O Z exp(—6i(h — ) Es( f)du | To]
_ /0 exp(—0;(h — u)) E[ZuEi(f,) | Toldu

— [ exp-bith-u) <mu expl(—du)Ei(fo) + Y, 2 =P E;-(f@) du

= exp(—d;h) (W%Ei(fo) + PZ ﬁ[exp((5i —d;)h) =1 —h(d; — 5j)]Ej(f0)> :
2) E| / o2du Ey(fi) | Io] = E| / exp(—8i(h — ) Ey(fu)o2du | I

23



exp(—=0i(h — u)) E[E;(fu) f;(fu) | Toldu

I
=
£
o\
>

<.
I
=)

a;

exp(—d;(h — u))E[Z Wik Er(fu) | Io]du

<
I
=)

I
-M“

P S~
=

<.

I
.Pg"

J

h
wi,j,k/ exp(—0;(h — u)) exp(—dgu)du Ex(fo)
0

<
Il
=)
=

bl
Sl
- o

- exp(—dxh) — exp(—d;h)

aj D Wik T Ey(fo).
j —0 ) k

3) Since the dW® and dW® are independent, we have

/0 2T = 2AVOE(f) | 1)
= E[/ Zy\/ 021 — p? exp(—=6;(u — b)) E;(f)dW M | 1] =

0
Let us compute the second term. We have

/Ozuﬁdw () | Io] = E[/O Zur /o2 exp(—6:(h — w))o(f2) EL(fu)du | To]
:E[/O Zyexp(—0;(h — u) Ze” (fu))du | Iy]
_ /<mu+/ JR2(pdW® + \/T= Zaw >exp (6 (h))(3 oy By(fu)) |

J=0

I
.MB

Il
o

Io] |

— s’ (mu+p [ Vv ) exp(aitn - )3 eusE )i | 1)

/ s exp(—;(h — u)( :

Ms

elej(fu))du | o]

Il
o

J

_ m;em p(-on) [ " exp((5 — 8, u)du B,(fo)

= mZ G P0G = 6)h = 1) + exp (=5 E; ().
E[/Oh(/ou o2dW @) exp(—6;(h — u) Ze” (fu))du | Io]

:; / / Va2dW ) exp(=5,(h — u))E;(f.))du | 1]

:ZE / / Va2dW D) exp(=5;(h — u))Ej(£.))du | 1]
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=SB VAR = ) ) x50~ )| 1

= 2ei’jE[/0 (/Ou exp(—d;(u — S))(Z e Er(fs))ds) exp(—0;(h — w))du | Iy

:26,.,]./0 (/Ouexp( 5, () 5 xD(—45) Bl fo) ) expl—b, (h—u))

_ Zei,jzej,k/ / exp(— 8, (1 — 8)) (exp(—5ps)ds exp(—8i(h— u)du Ey(fo))

= Ze” Ze]kexp —0;h) / exp((0; — 5j)u)(/0u exp((0; — 0x)s)ds)du Ei(fy))

exp( Sxh) — exp(—d;h) exp(—0d;h) — exp(—0d;h)
= — E .
;%Z%% —5k 8; — Ok 0; — 0j o)

As a summary, we have for ¢ # 0:

E[Zf%Ei(fh)pJ Iy} = m*h? exp(—8;h) Ei( fo)
+2mp Y L lexp (B = 5)h) — 1= h(Gi = 5)1E;(fo

DPi,j
exp(—dxh) — exp(—d;h
+Za] Zwl:% 5)_619 ( ) Ek(fO)

+2pmz e (O (5~ )= 1)+ exp( 8k} (1)

exp( dgh) — exp(—d;h) exp(—d;h) — exp(—d;h)
+2p° Zez,yzey, 5, — 5k kéi — 5, - Jéz_ yy 1Ex (fo)-
7=0

By combining the second and fourth terms in the previous equality, one gets the
second term in (A.12). By rearranging the third term in the previous equality, one
gets the third term in (A.12). By rearranging the fifth term in the previous equality,
one gets the fourth term in (A.12).H

Lemma A5: Conditional and unconditional fourth moment. Let h > 0 and

consider Zy, defined in (A.1) and Iy the information at time 0. Then we have

p
E[Z} | I] = m*h* + 6m?aeh® + +6m*h* Y %(1 — exp(—8:h)E:(fo)
i=1
+3a2h? + 6, Z lexp(—d;h) — 1+ 8;hEi( fo)

=1
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+6sz )VEr(fo) +12mpth] Ej(fo) + 12p” an VEu(fo)  (A.15)

7=0

where

]_5 = Sup{ﬁi; 1 S [ S ]-}7

e 5
(A.16)
p
ae;; |1—exp(=d;h 1 —exp(—d;h
mj(h)zzé._g [ 6-( ih) 5.( )}, (A.17)
1 j j i

Ny

Za eijejr [1—exp(—=dgh) 1—exp(=dih)
‘ <0 — 0k | (6 — 0k)On (8; — 0k)0;

_ 1—exp(=d;h) 1—exp(=d;h)
G=o)5, T G0, D
(A.18)

Hence,

E[Z;] = m*h* + 6mPagh® + 3a2h* + 6ly(h) + 12mphmg(h) + 12p*ng(h).  (A.19)

Proof. V\I/F have: .
7z} :4/ ngzu+6/ Z2d[Z, 7).,
0 0

— dm [ Z3du+4 [ Z3\/52[\/T = RdW ) + pdW ] + 6 [ Z202du.
Hence,

h
E[Z; | Iy —4m/ E[Z} | Io]du+6/ E[Z202 | Ip)du

_4m/ Z3|Iodu+62al/ E[Z2E;(f,) | Io]du

We already compute E[Z3 | Ig] Moreover, E[Z202 | Iy] = Y. a;E[Z2E;(f.) | To]
which is also already computed. Hence, we have to integrate their expressions to
get B2} | L.

Simple calculus show that

h J— . .
/ w exp(—Sus)du = 1 —exp(— ((S;Zh,)(l + d;h)
0 i

26

zp: ( " ajwi {1 —exp(—drh) 1 —exp(—d;h)
= a; —
i=1

)



and

" - 212
/ u? exp(—d;u)du = 2 — exp(=0ih) ?3+ 20ih + 0ih )
0

T}}lerefore: )
ht a; [h? 1 —exp(=d&;h)(1+ ;h)
3 _ 3 3 ? ) [
/0 E[Z2 | I)) =m T + magh® + 3m Eﬁ — [—2 — 52 ] Ei(fo)

P P a;€; j exp(—d:h) — 1 + 0:h ex —(Szh -1+ (Slh
+%§:( ,][p<y> sh_ exp(=dih) } Bt
j=0

£ b~ 4 52 52

13
Moreover, for ¢ # 0:

[FBIZ2E(f) | I) = m? / (2 exp(—6u) E:(fo)) du

/0 (Qmpu Z

/(28 u) B (fo) + 2¢0° Zdzk Ekfo))

exp —0ju) — exp(=d;u))E (fo)>

k=0
—ex o;h o;h 52h2
:m2 exXp(= )(523+2 ki )i(fo)
pi y 1— 5BV 4 S:h 1— —0;h)(1 + 6;h
Hmpzo(;f@[ LS Ao
]:

52 2

Di 4
;Wi .k 1— exp(—ékh) 1— exp(—éih)
— E
p
5 € j€jk exp( ogh) 1—exp(=d;h)

1 —exp(—d;h) 1 —exp(—d;h)
B8 G5 DfMﬁ)

For i = 0, we have:

h h 2h3 a0h2
/ E[Z2Ey(f.) | L] = / E[Z? | I = Z—; exp(—6;h) — 1 +
0 0 j=1 J
;) Ej(fo)-
Therefore,
2 _— E— . .
[Zh | IO] — m*ht + 4m a0h3 4 12m2 Z |:h2 1 exp( (;th)(l +6zh):| Ez(fo)
a;e; exp(—d;h) —1+d6:h exp(=0;h) — 1+ 6;h
+12mp2( 5 _(]5 { p(=9; ()52 i _ expl ()52 ]) E;(fo)
= J A

+2agm?*h® + 3aih? + 6ay Z [exp(—8;h) — 1+ 8;h)Ei( fo)

7,1’
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"2 —exp(—0;h)(2 + 20; 22
+6m22ai exp(—0;h)(2 + 25;h + 6;h%)

5 Ei(fo)
i=1 g
AN 1 —exp(—=d;h)(14+6;h) 1 —exp(—d;h)(1+ d;h)
t2mp) > 55 { % — - 5 } E;(fo)
i=1 j=0 \* J J i
& o a;w; 1 —exp(—dxh) 1 —exp(—d;h
+6Za,»z(z s | L= OBl LZeB0 ) g ()
i=1 k=0 !

P
; 1 —exp(—dxh) 1 —exp(—d;h)
12° Cij Cik _
BRSPS <Z<5 By R AT A R AT
1 —exp(—d;h) 1 —exp(—d;h)
- E .
G =000, (6o Ko

After rearranging some terms and making some calculus, one gets:

p

E[Z} | I] = m*h* + 6m*agh® + +6m*h? %(1 — exp(—8;h))E;i(fo)
i=1
+3agh? + 6ay Z [exp(—d;h) — 1+ 6:h]E;i(fo)
p p
ajwijk [1—exp(—=0xh) 1 —exp(—d;h)
— E
| (Z 5'—%[ 5 5 (o)

17 4
aei; [1—exp(=d;h) 1—exp(=dh) _
+12mphz ( 5= 0, [ 5, 5, E;(fo)

p p
, eijeik [1—exp(=dxh) 1 —exp(=dh)
+12p Z [Z @i <Z 8; — Ok { (6; — k)0 (8; — k)0,

i=1 1 —exp(—0;h) 1 —exp(—d;h)
—(6—9))9; T — 5;)6; })] Ei(fo)-m
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