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Abstract

An exact discretization of continuous time stochastic volatility processes observed at
irregularly spaced times is used to give insights on how a coherent GARCH model can be
specified for such data. The relation of our approach with those in the existing literature is
studied.
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Two recent papers, Engle (2000) and Ghysels and Jasiak (1998), proposed different
formulations of GARCH models for irregularly spaced data. In this note, we exploit results of
Meddahi and Renault (2002) to clarify the advantage of each approach and propose a model
that combines these advantages.

In the sequel, we assume that a financial price S; is observed at irregularly spaced dates
to,t1y ey ty, With 0 = ¢y < t; < ... < t,. We denote by z;, i=1,...,n, the i-th duration (z; =
t; —t; 1), and by &; the continuously compounded return of S; over the period (¢; 1,%] (&;
log(Sti) - log(Sti—l))'

In his simplest volatility model, Engle (2000) assumes that the variable o2 | defined as
9 h;

1:

1

o L where hi_; = Varle; | €5,%j, 7 <i— 1514 (1)

X

follows a GARCH(1,1)-type equation (Bollerslev, 1986). More precisely, under the assumption
Elei | €,z <i—1;2;] =0, (2)

Engle (2000) specifies
ol 1 =w+alei1/\/Zi1) + Bol,. (3)

In other words, in order to take into account the unequally spaced feature of the returns, Engle
(2000) assumes that the variance per time-unit, o? |, follows a GARCH(1,1) equation.

In contrast, Ghysels and Jasiak (1998) specify a GARCH equation for the total variance
process 7%‘—1 defined by

ili_l = VGT'[EZ' | Ej,ﬂfj,j <i-— 1] (4)
However, in order to take into account the unequally spaced feature of the returns, Ghysels
and Jasiak (1998) assume a time-varying parameter GARCH equation with

hio = w1 + oE) |+ Bi1hi_s, (5)
where the parameters w;_1, a;_1, and (3;_; are functions of the expected duration ;_; defined
as ;1 = Elz; | €j,2j,7 < i — 1] and a structural unknown parameter. The functional forms
adopted by Ghysels and Jasiak (1998) are those derived by Drost and Werker (1996) for a
weak GARCH representation (Drost and Nijman, 1993) of a GARCH diffusion model (Nelson,
1990) when observations are equally spaced by a length, say, A. For instance, Drost and
Werker (1996) show that aa + Ba = exp(—kA) where k is the mean reverting parameter of
the continuous time spot variance process. Therefore Ghysels and Jasiak (1998) assume

ai—1 + Bic1 = exp(—K_1).

It is clear that there are several differences between Engle (2000) and Ghysels and Jasiak
(1998) approaches. The first one is in the conditioning informations: Engle (2000) considered
the variance of the return ¢; given the information F¢ ; = o(¢;, z;,j < i—1;z;) while Ghysels
and Jasiak (1998) considered the information G ; = o(¢;,z;,7 < i — 1). Clearly, under the
assumption (2), one has

hi-i = E[hi_1 | G 1). (6)



The second difference is in the GARCH formulation: Equation (3), for the variance per
unit of time, implies a time-varying parameter GARCH equation for the total variance process
hi_li

x Z;
hi_1 = wx; + a——¢7 | + B——h;_s. (7)
Ti Ti1

Therefore, by using (6) and the definition of 1;_1, one gets

¢Z12+szlz2+ﬁ¢ N'

Ti—1 -1 Ti—1

hz l—wwz 1t

which differs from (5) because it is not a GARCH equation (due to the presence of the last
term) and the time-varying coefficients involve not only the expected value of z;, ¥; 1, but also
the duration z;_;.

A third difference, is that Ghysels and Jasiak (1998) considered a weak GARCH
representation of the returns while Engle (2000) considered a semi-strong one (Drost and
Nijman, 1993). This difference is not important for our purpose and we therefore ignore it; see
Drost and Werker (1996) and Meddahi and Renault (2002) for a discussion.

For future reference, note that one gets from (7) the autoregressive representation for o7 ;:

o =w+(a+B)ol,+si1, sii=a((lei1/VTi):—0ty), Elsiq| Fly]=0. (9)

We now consider an exact discretization of a continuous time stochastic volatility model
observed at irregularly spaced times. We assume that the price S; is given by

dlog S; = \/udW,, (10)

where W; is a Brownian process, v; is a stationary square-integrable and positive process,
independent with W;, such that

VA >0, Elvipa | v, 7 <t] =0+ exp(—kA)(vy — 0). (11)

Note that we rule out a drift in Eq. (10) in order to get the same assumption (2) which
simplifies the exposition. For the same reason, we assume that the processes {W;} and {v;}
are mutually independent, which excludes the so-called leverage effect. More importantly, we
also assume in the rest of the note that the continuous time process driving the durations
and the bivariate process {(W;, v;)} are mutually independent; see the end of the note for a
comment. Finally, Eq. (11) includes the popular Nelson (1990) GARCH diffusion model, the
Heston (1993) affine model, the CEV model, as well as the positive Lévy Ornstein-Uhlenbeck
model of Barndorff-Nielsen and Shephard (2001).

As pointed out by Meddahi and Renault (2002), when one considers temporal aggregation
of stochastic volatility models, one has to incorporate the spot variance v; in the relevant
conditioning information. This leads us to study the variance of the return ¢; given the
information Ff | = o(ej,vj, 24,7 < ¢ — 1;;). In the appendix, we show that

Varle; | Ff_q] = 0z; + c(kxi)(vier — )y, (12)



where ¢(z) = (1—exp(—z))/x. Note that ¢(z) = 1 for small z, which shows that the variance of
the innovation is approximately equal to v;_;x;. This approximate linearity leads us, following
Engle (2000), to study the discrete time behavior of the variance per time-unit:

Varle;, | F{
fo = Vel [ Fl (13)
Z;
In the appendix, we show that
fie1 = wi +7ifi2 + vi—1, where (14)

c(kx;)

Yi = exp(—/{xi_l) , W; = 0(1 — ’}’z), Vi1 = C(I{.Ii)(vi_l — E[’Ui_l ‘ .7:1-6_2]). (15)

c(kxi—q)
Therefore, f; is an autoregressive process of order one and ¢; is a SR-SARV process as in
Andersen (1994) and Meddahi and Renault (2002). However, an important difference with
these two studies is that f;_; is an AR(1) process with time-varying parameters.

This time-varying feature of the parameters is in contrast with the specification (9) adopted
by Engle (2000), who does not take into account the effects of temporal aggregation on the
model parameters. From (15) we see that this effect is quite important and plays a role in other
specifications as well. For example, for long durations x;, the conditional variance per time-unit
over the next duration should be close to the unconditional one. As we see from (12), f; 1 — 6
for z; — 0o. Specifying time-invariant parameters in (3) contradicts this natural assumption.

In a different way, Ghysels and Jasiak (1998) highlighted the importance of taking into
account the temporal aggregation effect. However, they proposed an ad hoc functional form
for the time-varying parameter, which in turn is not supported by an exact discretization of a
continuous time process. In addition, our exact discretization clearly shows that it is better to
model the variance per time-unit (as in Engle, 2000) instead of the total variance over the next
duration (as in Ghysels and Jasiak, 1998) because total variances are foremost influenced by
the associated duration. For example, in (5) a high variance for the current duration induces
a high volatility for the following duration, even if both durations are of unequal length.

Finally, regarding the conditioning information, our approach clearly favors the one adopted
by Engle (2000), i.e., by incorporating the current duration in the information. Of course,
one can always use the formula (6) and get a volatility model given the information G¢ , as in
Ghysels and Jasiak (1998). However, from (14), one needs to compute for instance E[vy; | G ],
which needs a specification of the dynamics of the durations (as in Engle and Russell, 1998,
for instance).

We conclude this note by making four remarks. 1) From Eq. (14), one may derive the
corresponding coefficients «; and f; as in (3) and (5) (with the restriction a; + §; = ;) if
one fully specifies the process v;. 2) Interestingly, (14) implies the following multi-period
conditional moment restriction

E e/ — wi — vigl_1 /T | 95_2] =0,

which is appealing because the conditioning information G¢ , does not include the latent
variable v;; see Meddahi and Renault (2002) for further discussions. 3) Our approach can
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be extended to non-linear stochastic volatility models by using the eigenfunction approach of
Meddahi (2001). 4) Renault and Werker (2003) show that an additional term appears in (14)
when the independence assumption of the continuous time process driving the durations and
the bivariate process {(W3, v;)} does not hold.

Appendix

Proof of (12). Observe that ¢; = fttz_l /Uy dW,. Therefore, by using the independence of the
processes {v;}, {W,}, and the process driving the durations, one gets

t; t;
Varle, | 7o = B[ [ vadu | 72.,] = / Elvy | vi1]du.

ti—1 ti—1

By using (11), one obtains easily the formula (12). B
Proof of (14). By combining (11), (12), and (13), one gets:

fii1 =0+ c(kx;)(vii1 — 0) = 0 + c(kx;) (exp(—kxi 1) (Vi 2 — 0) +v; 1 — E[v; 1 | via])
(fiz —0)
c(kx; 1)

which coincides with (14) given that Elv,—y | vi—a] = E[vi—1 | Ff_5] (under the independence
of the duration and volatility processes). B

= 0 + c(kz;)(exp(—KTi—1) +vim1 — Elvic1 | visa)),
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