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Abstract

The quality of the asymptotic normality of realized volatility can be poor if sampling does not
occur at very high frequencies. In this paper we consider an alternative approximation to the
finite sample distribution of realized volatility based on Edgeworth expansions. In particular, we
show how confidence intervals for integrated volatility can be constructed using these Edgeworth
expansions. The Monte Carlo study we conduct shows that the intervals based on the Edgeworth
corrections have improved properties relatively to the conventional intervals based on the normal
approximation. Contrary to the bootstrap, the Edgeworth approach is an analytical approach that
is easily implemented, without requiring any resampling of one’s data. A comparison between
the bootstrap and the Edgeworth expansion shows that the bootstrap outperforms the Edgeworth
corrected intervals. Thus, if we are willing to incur in the additional computational cost involved
in computing bootstrap intervals, these are preferred over the Edgeworth intervals. Nevertheless,
if we are not willing to incur in this additional cost, our results suggest that Edgeworth corrected
intervals should replace the conventional intervals based on the first order normal approximation.
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1 Introduction

Realized volatility is now a standard measure of volatility in empirical finance. For moderate fre-

quencies such as five or thirty minutes, realized volatility is an accurate measure of volatility. In

addition, the limit theory provided by Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen

and Shephard (2002) shows that realized volatility has an asymptotic normal distribution under general

conditions on the price and volatility processes (but excluding microstructure noise). This powerful

result can be used for inference on volatility, e.g. for constructing confidence intervals for integrated

volatility. Nevertheless, existing simulation results (see e.g. Barndorff-Nielsen and Shephard (2005),

Gonçalves and Meddahi (2005) and Zhang et. al. (2005a)) show that the asymptotic normality of

realized volatility is not a good approximation for the moderate sample sizes often used in practice

when computing realized volatility. To overcome this limitation, the logarithmic transformation of

realized volatility is often used as an alternative to the raw version of realized volatility (see e.g. An-

dersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001), and

Barndorff-Nielsen and Shephard (2002, 2005)). Recently, Gonçalves and Meddahi (2006) propose a

class of analytical transformations of realized volatility based on the Box-Cox transformation, which

includes the log transformation and the raw realized volatility as special cases. Their results show

that the log transformation is not the optimal choice from the viewpoint of eliminating skewness in

finite samples. An alternative tool of inference for realized volatility based estimators is the bootstrap,

which is considered in Gonçalves and Meddahi (2005). In particular, they propose several bootstrap

methods for realized volatility and show that the bootstrap outperforms the normal approximation in

small samples.

In this paper we explore an alternative method of inference for realized volatility. Specifically,

we consider analytical corrections for realized volatility based on Edgeworth expansions. Edgeworth

expansions correct the asymptotic normal approximation by including explicit corrections for skewness

and kurtosis. These corrections can be quite important in small samples, where skewness and excess

kurtosis are often present. In the bootstrap literature, Edgeworth expansions are the main tool to

theoretically explain why the bootstrap outperforms the normal approximation. Using this approach,

Gonçalves and Meddahi (2005) derived Edgeworth expansions for studentized statistics based on re-

alized volatility and used them to assess the accuracy of the bootstrap in comparison to the normal

approximation. Here we rely explicitly on the analytical Edgeworth expansions derived by Gonçalves

and Meddahi (2005) to correct the normal approximation for realized volatility. In particular, we pro-

pose confidence intervals for integrated volatility that incorporate an analytical correction for skewness

and kurtosis. Contrary to the bootstrap approach, the confidence intervals based on the Edgeworth

expansions do not require any simulation and are therefore less computationally demanding than the

bootstrap intervals.
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Recently, Zhang et. al. (2005a) also propose Edgeworth expansions for realized volatility estimators

as a means to improve upon the first order asymptotic theory. Contrary to Gonçalves and Meddahi

(2005), who abstract from the presence of microstructure noise and only consider realized volatility,

Zhang et. al. (2005a) allow for microstructure noise and therefore study a variety of realized volatility

like estimators (including realized volatility but also other microstructure noise robust estimators).

Whereas the Edgeworth expansions derived by Zhang et. al. (2005a) apply only to normalized

statistics based on the true variance of realized volatility, the expansions derived by Gonçalves and

Meddadi (2005) apply also to studentized statistics (where the variance is replaced by a consistent

estimator). Because the variance of realized volatility is usually unknown, studentized statistics are

the statistics used in practice. For the special case of normalized statistics, the results of Zhang et.

al. (2005a) extend those of Gonçalves and Meddahi (2005) to allow for microstructure noise. Here we

focus on the Edgeworth expansions for studentized statistics derived by Gonçalves and Meddahi (2005)

and evaluate the coverage probability of confidence intervals corrected by these Edgeworth expansions.

For comparison purposes, we also include in our study the infeasible, normalized statistics. Our results

show that it is important to use the appropriate Edgeworth expansions when computing confidence

intervals for integrated volatility.

We conduct extensive Monte Carlo simulations to evaluate the finite sample performance of the

Edgeworth corrected confidence intervals. We consider two types of intervals: intervals based on in-

feasible Edgeworth expansions that depend on the true cumulants of the realized volatility statistic,

and intervals based on a feasible version of the Edgeworth expansions, in which the true cumulants are

replaced by consistent estimators. These are the empirical Edgeworth corrected intervals. For com-

parison purposes, we also include the traditional intervals based on the asymptotic normal distribution

and the i.i.d. bootstrap interval proposed by Gonçalves and Meddahi (2005). Our simulation results

show that the Edgeworth expansion corrected intervals outperform the conventional asymptotic theory

based intervals. The infeasible intervals tend to perform extremely well, with coverage probabilities

that are close to the desired 95% nominal level, especially for one-sided intervals. The feasible intervals

based on the empirical Edgeworth expansions yield level distortions that are larger than the infeasible

intervals. This is as expected given that cumulants are typically hard to estimate in finite samples.

The empirical Edgeworth expansions corrected intervals are nevertheless superior to the conventional

intervals based on first order asymptotic theory. A comparison between the Edgeworth approach and

the bootstrap approach shows that the bootstrap outperforms the Edgeworth corrections. This finding

is in agreement with the results found in the bootstrap literature, where the bootstrap is often found

to be superior to analytical corrections based on empirical Edgeworth expansions (see e.g. Hardle,

Kreiss and Horowitz (2003)). Our results suggest that the additional computational burden imposed

by the bootstrap pays off in terms of accuracy. Nevertheless, if one wants to avoid this additional cost

and not use the bootstrap, the Edgeworth corrected intervals should clearly replace the conventional

intervals.
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We also study the robustness of the Edgeworth expansions when there are microstructure noises.

The main finding is that one can still use these expansions when the frequency of observation is

moderate (e.g., half an our returns). However, higher frequencies lead to invalid inference.

The structure of the paper is as follows. In Section 2, we present the setup and review the first

order asymptotic theory for realized volatility. We also give the Edgeworth expansions for realized

volatility derived in Gonçalves and Meddahi (2005). In Section 3, we show how to use these expansions

to construct improved confidence intervals for integrated volatility. We give results for both the

normalized and the studentized statistics, and for one-sided and two-sided intervals. In Section 4, we

discuss the Monte Carlo simulation results. Section 5 deals with an empirical analysis while Section 6

concludes.

2 Setup and review of existing results

2.1 Setup

We assume the log price process {log St : t ≥ 0} follows the continuous-time model

d log St = vtdWt, (1)

where Wt denotes a standard Brownian motion and vt a volatility term. By assumption the drift term

is zero and Wt and vt are independent, thus excluding leverage and drift effects.

Intraday returns at a given horizon h are denoted ri and are defined as follows:

ri ≡ log Sih − log S(i−1)h =
∫ ih

(i−1)h
vudWu, for i = 1, . . . , 1/h,

with 1/h an integer.

The parameter of interest is the integrated volatility over a day,

IV =
∫ 1

0
v2
udu,

where we have normalized the daily horizon to be the interval (0, 1). The realized volatility estimator

is defined as

RV =
1/h∑

i=1

r2
i .

Following the notation of Gonçalves and Meddahi (2005), we let the integrated power volatility be

denoted by

σq ≡
∫ 1

0
vq
udu
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for any q > 0. Its empirical analogue is the realized q-th order power variation, defined as

Rq = h−q/2+1

1/h∑

i=1

|ri|q .

Under certain regularity conditions (see Barndorff-Nielsen and Shephard (2004)), Rq
P→ µqσq, where

µq = E |Z|q, Z ∼ N (0, 1). The theory that follows involves the values of µ4, µ6 and µ8, which are 3,

15 and 105, respectively.

2.2 Asymptotic normality of realized volatility

As h → 0, Barndorff-Nielsen and Shephard (2002) (see also Jacod and Protter (1998), Jacod (1994))

show that

Sh ≡
√

h−1 (RV − IV )√
V

→d N (0, 1) , (2)

where V = 2σ4 is the asymptotic variance of
√

h−1RV . The statistic Sh is a normalized statistic. Since

V is usually unknown because it depends on the volatility path through σ4, Sh is infeasible in practice.

Barndorff-Nielsen and Shephard (2002) suggest replacing V with V̂ = 2
3R4, a consistent estimator of

V . They prove that the studentized statistic Th has also an asymptotic normal distribution:

Th ≡
√

h−1 (RV − IV )√
V̂

→d N (0, 1) . (3)

The asymptotic normal distribution can be used to construct confidence intervals for IV . Alterna-

tively, we can resort to Edgeworth expansions to improve upon the asymptotic normal approximation.

2.3 Edgeworth expansions for realized volatility

In this section we describe the Edgeworth expansions for Sh and Th derived by Gonçalves and Meddahi

(2005). These expansions depend on the cumulants of the statistic of interest.

Let κj (Sh) denote the jth order cumulant of Sh and let κ̃j denote the leading term of κj (Sh)

through order h. The normalized statistic is by construction centered at zero and it has unit variance

(conditional on the volatility path). Hence

κ1 (Sh) = 0, and

κ2 (Sh) = 1

which implies that κ̃1 = 0 and κ̃2 = 1. Based on the results of Gonçalves and Meddahi (2005), we can

show that

κ3 (Sh) =
√

hκ̃3 (4)

κ4 (Sh) = hκ̃4, (5)

4



where

κ̃3 = B1
σ6

(
σ4

)3/2
and κ̃4 = B2

σ8

(
σ4

)2 , (6)

with B1 = 4√
2

and B2 = 12. Thus, although the first order asymptotic normal distribution of Sh has

no skewness and no excess kurtosis (as h → 0, κ3 (Sh) and κ4 (Sh) vanish), these are non zero at an

higher order.

For the feasible statistic, let κj (Th) denote the jth order cumulant of Th and let κj denote the

leading term of κj (Th) through order h. Gonçalves and Meddahi (2005) show that conditional on v

κ1 (Th) =
√

hκ1,

κ2 (Th) = 1 + hκ2,

κ3 (Th) =
√

hκ3, and

κ4 (Th) = hκ4,

where

κ1 = −A1

2
σ6

(
σ4

)3/2
,

κ2 = (C1 −A2)
σ8

(
σ4

)2 +
7
4
A2

1

(
σ6

)2

(
σ4

)3 ,

κ3 = (B1 − 3A1)
σ6

(
σ4

)3/2
, and

κ4 = (B2 + 3C1 − 6A2)
σ8

(
σ4

)2 +
(
18A2

1 − 6A1B1

)
(
σ6

)2

(
σ4

)3 ,

where A1 = 4√
2
, A2 = 12, B1 = 4√

2
, B2 = 12 and C1 = 32

3 .

The normalized and the studentized statistics have different higher order cumulants through order

O (h). In particular, the studentized statistic has a higher order bias equal to
√

hκ1 due to the

estimation of V . In contrast, the bias of Sh is zero by construction.

We now give the Edgeworth expansions for the distributions of Sh and Th. Let

He1 (x) = x

He3 (x) = x
(
x2 − 3

)

He5 (x) = x
(
x4 − 10x2 + 15

)
,

denote the first, third and fifth order Hermite polynomials.

5



The second order Edgeworth expansion for Sh is given by

P (Sh ≤ x) = Φ (x) +
√

hp1 (x) φ (x) + hp2 (x) φ (x) + o (h) , (7)

where

p1 (x) = −1
6
κ̃3

(
x2 − 1

)
(8)

p2 (x) = − 1
24

κ̃4He3 (x)− 1
72

κ̃2
3He5 (x) . (9)

The second order Edgeworth expansion for Th is given by

P (Th ≤ x) = Φ (x) +
√

hq1 (x) φ (x) + hq2 (x) φ (x) + o (h) , (10)

where

q1 (x) = −
(

κ1 +
1
6
κ3

(
x2 − 1

))
(11)

q2 (x) = −
{

1
2

(
κ2 + κ2

1

)
He1 (x) +

1
24

(κ4 + 4κ1κ3)He3 (x) +
1
72

κ2
3He5 (x)

}
. (12)

The Edgeworth expansions in (7) and (10) are different. Both expansions contain correction

terms for skewness and kurtosis but these differ depending on whether the statistic is normalized or

studentized.

3 Edgeworth corrected intervals for realized volatility

The goal of this section is to explain how one can use the Edgeworth expansions presented above to

construct confidence intervals for IV with improved coverage probability. Our discussion follows Hall

(1992). We first consider one-sided intervals, which are easier to describe. While one-sided intervals

of IV are not as common in the econometrics literature, Mykland (2000, 2002, 2003) shows that these

intervals are important for hedging in the context of option pricing.. Two-sided symmetric intervals

will follow next. In our discussion, we focus on intervals for IV based on the studentized statistic

Th. Similar arguments hold for the normalized statistic Sh. Therefore, we only present the final

expressions for the intervals based on Sh, omitting the details that explain why these are expected

to outperform the conventional intervals based on the normal approximation. For concreteness and

because this is what we implement in the Monte Carlo simulations, we focus on 95% level confidence

intervals throughout.
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3.1 One-sided intervals

The conventional 95% level one-sided confidence interval based on the asymptotic normality result in

(3) is of the following form:

IAT−T,1 =
(
−∞, RV −

√
hV̂ z0.05

)
,

where z0.05 = −1.645 is the 5% percentile of the normal distribution. This interval has coverage

probability equal to

P
(
IV ∈ IAT−T,1

)
= P (Th ≥ z0.05) = 1− P (Th < z0.05)

= 1−
[
Φ(z0.05) +

√
hq1 (z0.05) φ (z0.05) + o

(√
h
)]

= 0.95−
√

hq1 (z0.05)φ (z0.05) + o
(√

h
)

,

given the Edgeworth expansion in (10). The error in coverage probability of IAT−T,1 is thus of order

O
(√

h
)
.

Consider now the following (infeasible) Edgeworth expansion corrected confidence interval for IV ,

IEE−T,1
inf =

(
−∞, RV −

√
hV̂ z0.05 + h

√
V̂ q1 (z0.05)

)
.

This interval contains a skewness correction term equal to h
√

V̂ q1 (z0.05), where q1 (x) is defined as in

(11). The coverage probability of IEE−T,1
inf is given by

P
(
IV ∈ IEE−T,1

inf

)
= P

(
Th ≥ z0.05 −

√
hq1 (z0.05)

)
= 1− P

(
Th < z0.05 −

√
hq1 (z0.05)

)
(13)

Using arguments detailed in Hall (1992, pp. 119-120), we can show that

P
(
Th < z0.05 −

√
hq1 (z0.05)

)
= Φ

(
z0.05 −

√
hq1 (z0.05)

)

+
√

hq1

(
z0.05 −

√
hq1 (z0.05)

)
φ

(
z0.05 −

√
hq1 (z0.05)

)
+ o

(√
h
)

= Φ (z0.05) + O (h) .

Thus, from (13), we have that

P
(
IV ∈ IEE−T,1

inf

)
= 1− Φ(z0.05) + O (h) = 0.95 + O (h) ,

implying that the error in coverage probability associated with IEE−T,1
inf is equal to

P
(
IV ∈ IEE−T,1

inf

)
− 0.95 = O (h) ,

smaller than the O
(√

h
)

error in coverage probability of IAT−T,1.

The interval IEE−T,1
inf is infeasible because the skewness correction term depends on the popula-

tion cumulants κ1 and κ3 entering the function q1 (x). The following empirical Edgeworth corrected
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confidence interval

IEE−T,1
feas =

(
−∞, RV −

√
hV̂ z0.05 + h

√
V̂ q̂1 (z0.05)

)

is a feasible version of IEE−T,1
inf where the skewness correction term is now equal to h

√
V̂ q̂1 (z0.05), with

q̂1 (x) defined in (11) except that κ1 and κ3, the leading terms of the first and third order cumulants of

Th, are replaced by consistent estimators. In particular, the results of Barndorff-Nielsen and Shephard

(2004) imply that the following estimators are consistent estimators of κ1 and κ3:

κ̂1 = −A1

2
R6/µ6

(R4/µ4)
3/2

= − 4
2
√

2
R6/15

(R4/3)3/2
,

κ̂3 = (B1 − 3A1)
R6/µ6

(R4/µ4)
3/2

= −2
4√
2

R6/15

(R4/3)3/2
,

given that A1 = B1 = 4√
2

and µ4 = 3 and µ6 = 15. Using arguments similar to those described in Hall

(1992, p. 119), we can show that the coverage probability error of the empirical Edgeworth corrected

confidence interval is no larger than the order o
(√

h
)
, given the consistency of κ̂j for κj . This error

is smaller than the error implicit in the normal approximation intervals, which is equal to O
(√

h
)
.

Similar results hold for intervals based on the normalized statistic. In particular, let

IAT−S,1 =
(
−∞, RV −

√
hV z0.05

)
, and

IEE−S,1
inf =

(
−∞, RV −

√
hV z0.05 + h

√
V p1 (z0.05)

)

denote the conventional asymptotic theory-based interval and the Edgeworth expansion corrected

confidence interval for IV based on the normalized statistic Sh (p1 is as defined in (8)). By arguments

similar to those described above, we can show that the error in coverage probabilities are O
(√

h
)

for

IAT−S,1 and O (h) for IEE−S,1
inf . As we remarked before, these intervals are usually infeasible because

they depend on V as well as on other higher order moments that are unknown in practice. Suppose we

replace all population moments by consistent estimators. In particular, for the Edgeworth expansion

based interval, suppose we replace V with V̂ and p1 (x) with p̂1 (x), where p̂1 (x) is of the same form

as in (8) except that κ̃3 is replaced with

̂̃κ3 = B1
σ6

(
σ4

)3/2
=

4√
2

R6/15

(R4/3)3/2
, (14)

a consistent estimator of κ̃3. This yields a feasible interval of the form

IEE−S,1
feas =

(
−∞, RV −

√
hV̂ z0.05 + h

√
V̂ p̂1 (z0.05)

)
.

We can show that the error in coverage probability of this interval is of order O
(√

h
)
, the same order

of magnitude as the error in coverage probability of the conventional interval based on the normal

approximation. The reason why this interval does not provide an improvement over the conventional
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interval is that it relies on the Edgeworth expansion for the normalized statistic, which does not take

into account the estimation of V (in particular it uses p1 instead of q1).

3.2 Two-sided intervals

The conventional 95% level two-sided symmetric confidence interval based on the asymptotic normality

result in (3) is of the following form:

IAT−T,2 =
(
RV −

√
hV̂ z0.975, RV +

√
hV̂ z0.975

)
,

where z0.975 = 1.96 is the 97.5% percentile of the normal distribution. This interval has coverage

probability equal to

P
(
IV ∈ IAT−T,2

)
= P (|Th| ≤ z0.975)

= 2Φ (z0.975)− 1 + 2hq2 (z0.975) φ (z0.975) + o (h)

= 0.95 + 2hq2 (z0.975) φ (z0.975) + o (h) ,

given the Edgeworth expansion in (10) and the symmetry properties of Φ, q1 and q2. The error in

coverage probability of IAT−T,2 is thus of order O (h).

We can obtain an improved symmetric confidence interval for IV by relying on the Edgeworth

expansion in (10). In particular, consider the following interval

IEE−T,2
inf =

(
RV −

√
hV̂ z0.975 + h3/2

√
V̂ q2 (z0.975) , RV +

√
hV̂ z0.975 − h3/2

√
V̂ q2 (z0.975)

)
.

This interval contains a skewness and kurtosis correction term equal to h3/2
√

V̂ q2 (z0.975), where

q2 (x) is defined as in (12). By arguments similar to those used above, we can show that the coverage

probability of IEE−T,2
inf is given by

P
(
IV ∈ IEE−T,2

inf

)
= P

(
|Th| ≤ z0.975 − h3/2q2 (z0.975)

)

= 0.95 + O
(
h2

)
,

implying that the error in coverage probability associated with IEE−T,2
inf is equal to

P
(
IV ∈ IEE−T,2

inf

)
− 0.95 = O

(
h2

)
,

smaller than the O (h) error in coverage probability of IAT−T,2.

The interval IEE−T,2
inf is infeasible because it depends on q2 (x), which in turn depends on the first

four cumulants κj , for j = 1, . . . , 4, of Th. To obtain a feasible interval, we replace these cumulants by
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consistent estimators. In particular, κ̂1 and κ̂3 are defined as before and, in addition, we let

κ̂2 = (C1 −A2)
R8/µ8

(R4/µ4)
2 +

7
4
A2

1

(R6/µ6)
2

(R4/µ4)
3 , and

κ̂4 = (B2 + 3C1 − 6A2)
R8/µ8

(R4/µ4)
2 +

(
18A2

1 − 6A1B1

) (R6/µ6)
2

(R4/µ4)
3 ,

where the constants A1, A2, B1, B2 and C1 are as defined above, and µ4 = 3, µ6 = 15 and µ8 = 105.

We thus obtain the following feasible (or empirical) Edgeworth expansion corrected symmetric

interval for IV :

IEE−T,2
feas =

(
RV −

√
hV̂ z0.975 + h3/2

√
V̂ q̂2 (z0.975) , RV +

√
hV̂ z0.975 − h3/2

√
V̂ q̂2 (z0.975)

)
.

This interval has coverage probability error of order smaller than O
(
h2

)
given the consistency of κ̂j

for κj .

For comparison purposes, we also consider symmetric intervals for IV based on the normalized

statistic Sh. These are defined as follows:

IAT−S,2 =
(
RV −

√
hV z0.975, RV +

√
hV z0.975

)
,

IEE−S,2
inf =

(
RV −

√
hV z0.975 + h3/2

√
V p2 (z0.975) , RV +

√
hV z0.025 − h3/2

√
V p2 (z0.975)

)
, and

IEE−S,2
feas =

(
RV −

√
hV̂ z0.975 + h3/2

√
V̂ p̂2 (z0.975) , RV +

√
hV̂ z0.975 − h3/2

√
V̂ p̂2 (z0.975)

)
.

The error in coverage probabilities of the asymptotic theory-based interval is equal to O (h), the same

as that of the feasible Edgeworth corrected interval. In particular, the feasible version of IEE−S,2
inf does

not yield an asymptotic refinement over the conventional interval because it relies on the unappropriate

Edgeworth expansion (i.e. it replaces V with V̂ but uses p2 instead of q2). The infeasible interval

promises an improvement, with a coverage probability error equal to O
(
h2

)
.

4 Monte Carlo Simulations

In this section, we conduct a Monte Carlo study to evaluate the finite sample performance of the

Edgeworth expansion corrected intervals in comparison to the asymptotic theory-based intervals and

the i.i.d. bootstrap of Gonçalves and Meddahi (2005). The design is the same as in Gonçalves and

Meddahi (2005). In particular, we consider two stochastic volatility models. The first model is the

GARCH(1,1) diffusion studied by Andersen and Bollerslev (1998) and the second model is a two-factor

diffusion model analyzed by Chernov et. al. (2003) and recently studied in the context of jump tests

by Huang and Tauchen (2005).

More specifically, we consider the following stochastic volatility model

d log St = µdt + vt

[
ρ1dW1t + ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

]
,
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where W1t, W2t and W3t are three independent standard Brownian motions. We fix µ = ρ1 = ρ2 = 0,

i.e. we assume no drift and no leverage effects.

The first model for vt is the GARCH(1,1) diffusion studied by Andersen and Bollerslev (1998):

dv2
t = 0.035

(
0.636− v2

t

)
dt + 0.144v2

t dW1t.

Finally, we consider the two-factor diffusion model analyzed by Chernov et al. (2003):1

vt = s-exp
(−1.2 + 0.04v2

1t + 1.5v2
2t

)

dv2
1t = −0.00137v2

1tdt + dW1t

dv2
2t = −1.386v2

2tdt +
(
1 + 0.25v2

2t

)
dW2t.

10,000 Monte Carlo replications are used throughout for six different sample sizes: 1/h = 1152, 576, 288, 96, 48

and 12, corresponding to “1.25-minute”, “2.5-minute”, “5-minute”, “15-minute”, “half-hour”, “2-hour”

returns.

Table 1 contains the first four cumulants of Sh and Th across different sample sizes. We use κj (·)
(for j = 1, 2, 3 and 4) to denote the jth order cumulant of the relevant statistic, e.g. κ1 (·) denotes either

κ1 (Sh) , the first order cumulant of Sh, or κ1 (Th), the first order cumulant of Th. For each statistic

and for each sample size, we report three values for each cumulant. The column entitled “Finite

Sample” contains the finite sample cumulants, averaged across the 10,000 simulations. For instance, if

M = 10, 000 denotes the number of Monte Carlo replications and S
(k,j)
h denotes the value of Sh for the

kth replication and jth observation, the finite sample value of κ1 (Sh) is 1
M

∑M
k=1

(
1

h−1

∑h−1

j=1 S
(k,j)
h

)
.

Similarly,

κ2 (Sh) =
1
M

M∑

k=1


 1

h−1

h−1∑

j=1


S

(k,j)
h − 1

h−1

h−1∑

j=1

S
(k,j)
h




2
 ,

κ3 (Sh) =
1
M

M∑

k=1


 1

h−1

h−1∑

j=1


S

(k,j)
h − 1

h−1

h−1∑

j=1

S
(k,j)
h




3
 , and

κ4 (Sh) =
1
M

M∑

k=1


 1

h−1

h−1∑

j=1


S

(k,j)
h − 1

h−1

h−1∑

j=1

S
(k,j)
h




4
− 3κ2

2 (Sh) ,

with κ2 (Sh) the sample variance of Sh, average across the M Monte Carlo simulations. Similar

formulas were used for Th. Note in particular that κ3 (·) is the finite sample third central moment of

the statistic of interest. This is related but not equal to the traditional skewness coefficient because it

is not scaled by the (3/2)th power of the sample variance. Similarly, κ4 (·) is related but not equal to

the excess kurtosis coefficient because it is not scaled by the 2nd power of the sample variance. The
1The function s-exp is the usual exponential function with a linear growth function splined in at high values of its

argument: s-exp(x) = exp (x) if x ≤ x0 and s-exp(x) = exp(x0)√
x0

√
x0 − x2

0 + x2 if x > x0, with x0 = log (1.5).
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column entitled “EE” contains the simulation values of the higher order cumulants given in Section

2.3, which enter the Edgeworth expansions presented in Section 3. For example, the third order “EE”

cumulant for Sh is equal to the average across the 10,000 Monte Carlo replications of
√

hκ̃3, as given

in (4) with κ̃3 defined in (6). The column “Est. EE” contains the estimated version of the cumulants

given in “EE”. In the previous example, it contains
√

ĥ̃κ3, where ̂̃κ3 is as defined in (14), averaged

across the 10,000 Monte Carlo replications.

For the GARCH(1,1) diffusion, Table 1 shows that the normalized statistic Sh has negligible finite

sample bias across all sample sizes and sample variance close to 1. Thus, the first and second higher

order cumulants entering the Edgeworth expansions agree well with their finite sample counterparts

in this case. The same is generally true for the third and fourth order cumulants. These can be

significantly different from zero, the value predicted by the first order asymptotic theory. The close

agreement between the first four finite sample cumulants of Sh and their higher order versions used in

the (infeasible) Edgeworth expansions suggests that the latter can provide a good approximation to

the finite sample distribution of Sh. As we will see next, this translates into good coverage probabilities

for the infeasible Edgeworth corrected intervals based on Sh (IEE−S
inf in Table 2 below). A comparison

between the “EE” and “Est. EE” columns shows that we tend to underestimate the finite sample

third and fourth order cumulants. The results for the studentized statistic Th show that differently

from Sh, there is a finite sample bias that is non negligible at the smaller sample sizes. However, this

finite sample bias is well matched with the higher order cumulants (compare “Finite Sample” with

“EE” for κ1 (·)). This is also true for κ2 (·), the variance of Th. The most striking difference between

Sh and Th is the fact that the third and fourth order finite sample cumulants of Th are much larger (in

absolute value) than those of Sh. This indicates that the finite sample distribution of Th is strongly

(negatively) skewed and it has large excess kurtosis. The comparison between the columns “Finite

Sample” and “EE” shows that there is a significant difference between the finite sample values of κ3 (·)
and κ4 (·) and their EE predictions, especially for the smaller sample sizes (this is particularly true

for h−1 = 12). Estimating these cumulants implies a further distortion in finite samples.

The comparison between the results for the GARCH(1,1) and the two factor diffusion models yields

the following conclusions. First, the finite sample distributions of Sh and Th for the two-factor diffusion

have more skewness and excess kurtosis than those for the GARCH(1,1) diffusion. This is especially

true for Th, where the third and fourth order cumulants can be very large at the smaller sample

sizes. This result is not very surprising given that the two-factor diffusion model is characterized

by very rugged sample paths, often comparable to those generated by a jump diffusion model. See

Gonçalves and Meddahi (2006) for more results on the comparison between these two models from

the viewpoint of skewness and kurtosis. Second, the distortions between the finite sample cumulants

and their higher order theoretical analogues are also larger for the two-factor diffusion than for the

GARCH(1,1) diffusion. Third, estimation of the higher order cumulants induces even larger distortions,

especially for the third and fourth order cumulants, when the sample size is small. Nevertheless, the

12



estimated third and fourth order cumulants are very different from zero, the value assumed by the

asymptotic normal distribution. This is true even for the larger sample sizes, which suggests that the

Edgeworth approach should yield better inference than the first order asymptotic approach. Based on

these results, we can also expect the coverage probabilities for the intervals based on the Edgeworth

corrections (as well as for the intervals based on the first order asymptotic theory) to be poorer for the

two-factor diffusion model compared to the GARCH(1,1) diffusion. These predictions are confirmed

by the results in Table 2, which we discuss next.

Table 2 contains the actual coverage probabilities of the confidence intervals described in Section

3. Specifically, we consider intervals based on the normalized statistic Sh and on the studentized

statistic Th. For each statistic and for both one-sided and two-sided symmetric intervals, three types

of intervals are considered: first order asymptotic theory-based intervals, intervals based on the Edge-

worth expansion of the statistic of interest, where the coefficients are the true population cumulants

(these correspond to the infeasible Edgeworth expansion intervals), and intervals based on the empir-

ical Edgeworth expansion, which replaces the true cumulants with consistent estimates. The intervals

based on Sh are infeasible, except for the feasible version of the Edgeworth expansion of Sh, where all

moments are estimated (this corresponds to the third column). These intervals are presented mainly

for comparison purposes. For the intervals based on Th, we also give the coverage probabilities of the

i.i.d. bootstrap. The results are from Gonçalves and Meddahi (2005).

The coverage probabilities for the infeasible Edgeworth corrected intervals based on Sh are generally

close to the desired 95% level for both diffusion models. One-sided intervals are particularly well

behaved. This is as expected given that Table 1 showed good agreement between the finite sample

cumulants and the higher order cumulants entering the infeasible Edgeworth expansions for Sh. The

asymptotic theory-based one-sided intervals tend to overcover for the smaller sample sizes. The feasible

version of the Edgeworth corrected intervals (IEE−S
feas ) performs much worse, with coverage rates well

below the 95% desired level. Although this interval is feasible in practice, it is the worst interval in

the table. The main reason for this performance is the fact that IEE−S
feas is based on the unappropriate

Edgeworth expansion, as discussed in Section 3. It replaces V with V̂ but relies on the correction

terms derived under the assumption that V is known. It is therefore important to use the appropriate

Edgeworth expansion when constructing confidence intervals for IV . The correct approach in this

case is to use IEE−T
feas . The first-order asymptotic theory-based intervals and the infeasible Edgeworth

expansion corrected intervals based on the studentized statistic Th are typically more distorted than

the corresponding intervals based on Sh. This is as expected given that the accuracy of the higher

order cumulants entering the Edgeworth expansions is smaller for Th than for Sh. The empirical

Edgeworth corrected intervals have larger coverage distortions than the infeasible Edgeworth intervals

(but significantly smaller than those of the conventional intervals). This is especially true for the two-

factor diffusion model, where the third and fourth order finite sample cumulants are not well matched

by the estimated cumulants. A comparison between the two last columns reveals that the i.i.d.
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bootstrap outperforms the Edgeworth corrected intervals based on the estimated cumulants. Thus,

although more computationally intensive, the bootstrap approach does yield a further refinement over

the Edgeworth approach. A comparison between the fourth and sixth columns reveals nevertheless that

the empirical Edgeworth corrected intervals outperform the first-order asymptotic theory approach.

Our study ignores the important practical problem of the presence of microstructure noises. It is

well established that high frequency prices are contaminated by noise; see, for instance, Hansen and

Lunde (2006) and the references therein. When one assumes that the log-price is observed with an

additive i.i.d. noise, Bandi and Russell (2005) and Zhang, Mykland and Aı̈t-Sahalia (2005b) proved

that the realized volatility explodes to infinity. This leads Zhang, Mykland and Aı̈t-Sahalia (2005b) to

propose a new measure of the integrated volatility, called the “Two Scale Realized Variance” (TSRV),

and prove its consistency. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), and Zhang (2006)

proposed other more efficient consistent estimators of the integrated variance. The asymptotic behavior

of the realized variance under microstructure noise has a strong impact on our analysis. It implies

that the numerator of the statistic Th, defined in (3), explodes. Consequently, our analysis is not valid

under microstructure.

Two approaches are possible. The first is to use an Edgeworth expansion of the central limit

theorems of the realized measures, where the central limit theorems are derived under the presence

of microstructure noises. This is the approach followed by Zhang, Mykland, and Aı̈t-Sahalia (2005a).

More precisely, they derived the Edgeworth expansions of several measures, including the realized

variance and the TSRV, when one considers the normalized central limit theorem. Ideally, one would

use the studentized statistic because the normalized one is not appropriate, as shown in our simulations

when there are no microstructure noises. The derivation of the Edgeworth expansion of the studentized

statistics under microstructure noises is difficult2 and left for future research.

A second approach is to use the Edgeworth expansion results derived under the assumption of no

microstructure noise despite the fact that this is not the case. Of course, one cannot expect any good

result in the case of very high frequency data or very noisy data, given the behavior of the numerator

of the statistic Th. In contrast, it is of interest to study the robustness of the Edgeworth expansions

for moderate frequencies and moderate microstructure noises. We follow this approach.

In our simulations, we assume that one observes S̃t, with

log S̃t = log St + ut

where log St is defined as previously while ut is an i.i.d. process, independent with (St, vt). We assume

that ut follows N (0, ψ). Given the empirical findings in Hansen and Lunde (2006), we assume that

ψ/E[v2
t ] equals 0.05%, 0.1% and 0.5%. The results presented in Table 3 concern the GARCH(1,1)

diffusion model. We did not consider the two-factor example because we cannot compute analytically

E[v2
t ] due to the presence of the spline function.

2See Gonçalves and Meddahi (2005) for the difficulties that one faces when there are no microstructure noises.
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We start our analysis by focusing on the cumulants of the statistic Th. The first important result

concerns the first cumulant. Clearly, it increases when one increases the magnitude of the noise or the

frequency of observations. This result is due to the bias in the realized variance that increases when the

magnitude of noise or frequency of observation increases. In contrast, the second cumulant decreases

when one increases the magnitude of the noise or the frequency of observations. In addition, it starts

by being higher than one (which is the theoretical value when there are no microstructure noises), and

then becomes lower. Interestingly, it is around one when considering the frequency h−1 = 48, which

corresponds to half an hour for markets that are open twenty four hours, as in our empirical study.

The behavior of the third and fourth cumulants are the same: they decrease when one increases the

magnitude of the noise or the frequency of observations, and converge to zero (their theoretical values

when there are no microstructure noises).

The behavior of the first cumulant of the statistic Th has a strong impact on the coverage proba-

bilities of the confidence intervals: those of the two (one) sided ones decrease, and achieve zero (one)

for the highest frequency and more noisy case. This is why we did not report the result for the case

h−1 = 1440. For moderate frequencies, Edgeworth based confidence intervals have better empirical

coverage probabilities than those based on the asymptotic theory (under no microstructure noise)

and are closer to their nominal coverage probabilities. In other words, it is worth using Edgeworth

expansions to build confidence intervals when one considers moderate high frequency noisy returns,

as we did in our empirical study.

5 Empirical Study

Our empirical study is based on the 1996 high frequency foreign exchange data provided by Olsen

& Associates. More precisely, we consider half an hour returns of US$/Yen and UK-Pound/US$

exchange rates from January 1st to December 31st. The returns are defined as the mid-quotes. The

results provided in Table 4 concern ten particular days. We computed the daily realized variances of

the US$/Yen data and selected the deciles. The corresponding days are November 16, March 31, May

5, August 16, August 8, August 14, January 2, September 24, April 26, December 25 and February

20. We selected the same days for the UK-Pound/US$ data. We performed this selection in order

to provide a comprehensive analysis. For each day, we provided the realized quarticity, as well as the

confidence intervals based on the raw statistic Th, its log-version, which has a better finite sample

behavior (see Barndorff-Nielsen and Shephard (2005) and Gonçalves and Meddahi (2005)), and the

confidence intervals based on the Edgeworth expansions. For each of these theories, we provided the

one-sided right endpoint (OS-R in the table) and the left and right two-sided endpoints (TS-L and

TS-R) of the confidence intervals.

Results in Table 4 suggest that when one considers the one-sided confidence intervals, the results

based on the log statistic and the Edgeworth expansions are close, but slightly different. They are also
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significatively different from those based on the raw statistic Th. Indeed, the right endpoints of the

confidence intervals based on the log transform and the Edgeworth expansions are higher than those

based on raw statistic, which leads to wider confidence intervals.

In contrast, the two-sided confidence intervals are quite different. When one compares them to

the confidence intervals based on the raw statistic, one observes that the left endpoint of the ones

based on the log transform are shifted to the right while those based on the Edgeworth expansions

are shifted to the left. However, the right endpoints of the intervals based on the log transform and

the Edgeworth expansions are higher than those based on the raw statistic. In addition, the end-

points of the Edgeworth expansions based intervals are smaller than those based on the log transform.

Consequently, the confidence intervals based on the raw statistic are included in those based on the

Edgeworth expansions, while those based on the log transform look like a shift to the right of those

based on the raw statistic.

There are four cases where the previous finding about the two-sided confidence intervals does

not hold. They correspond to the cases where the left endpoints of the Edgeworth expansions based

intervals are negative. Of course, one knows that the variance is positive and therefore one should take

as the left endpoint the maximum of zero and the empirical endpoint given in Section 3. Interestingly,

these four cases hold when the realized quarticity is high, which suggests that jumps may occur during

these days. Obviously, the presence of jumps is an important empirical fact that we ignore in our

theory. We left this extension to future research.

6 Conclusion

The main contribution of this paper has been to propose confidence intervals for integrated volatil-

ity based on correction terms for skewness and kurtosis derived from Edgeworth expansions. The

traditional arguments based on Edgeworth expansions show that these intervals have coverage prob-

ability errors smaller than the errors underlying the first-order asymptotic theory. The results of our

Monte Carlo study confirm these predictions. For two diffusion models, we show that the finite sam-

ple performance of the Edgeworth corrected intervals is better than the finite sample performance of

the conventional intervals based on the normal approximation. We also show that it is important to

rely on the appropriate Edgeworth expansion when computing the corrected confidence intervals. In

particular, the Edgeworth expansion for the studentized statistic should be used in constructing Edge-

worth corrected intervals based on this statistic. Simply replacing population moments by consistent

estimators in an Edgeworth expansion derived for the normalized statistic (which assumes that the

true variance is known) leads to intervals with poor coverage probabilities.

A comparison between the empirical Edgeworth corrected intervals for IV and the i.i.d. bootstrap

proposed by Gonçalves and Meddahi (2005) shows that the later approach is superior. Therefore, if one

is willing to incur in the additional computational cost involved in computing bootstrap intervals, these
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are preferred over the Edgeworth-based intervals. If one is not willing to incur in this additional cost,

then our results suggest that Edgeworth-corrected confidence intervals should replace the conventional

intervals based on the normal approximation.
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Table 1. Finite Sample and Edgeworth expansion-based Cumulants of Sh and Th

Normalized Statistic Sh Studentized Statistic Th

h−1 Finite Sample EE Est. EE Finite Sample EE Est. EE

GARCH(1,1) diffusion

12 κ1 (·) −0.024 0.000 0.000 −0.590 −0.410 −0.293
κ2 (·) 1.005 1.000 1.000 2.873 2.066 1.579
κ3 (·) 0.860 0.820 0.586 −14.032 −1.641 −1.172
κ4 (·) 1.136 1.014 0.422 171.46 5.716 3.309

48 κ1 (·) −0.019 0.000 0.000 −0.166 −0.145 −0.134
κ2 (·) 0.985 1.000 1.000 1.288 1.267 1.216
κ3 (·) 0.428 0.410 0.359 −1.398 −0.821 −0.717
κ4 (·) 0.419 0.253 0.173 3.400 1.429 1.208

288 κ1 (·) −0.004 0.000 0.000 −0.088 −0.084 −0.081
κ2 (·) 0.988 1.000 1.000 1.040 1.044 1.043
κ3 (·) 0.124 0.168 0.162 −0.412 −0.335 −0.324
κ4 (·) 0.017 0.042 0.038 0.448 0.238 0.233

1152 κ1 (·) 0.027 0.000 0.000 −0.014 −0.042 −0.042
κ2 (·) 0.995 1.000 1.000 1.000 1.011 1.011
κ3 (·) 0.110 0.084 0.083 −0.141 −0.168 −0.166
κ4 (·) −0.010 0.011 0.010 0.041 0.060 0.059

Two-factor diffusion

12 κ1 (·) −0.016 0.000 0.000 −1.005 −0.845 −0.335
κ2 (·) 0.870 1.000 1.000 6.107 5.779 1.763
κ3 (·) 1.155 1.689 0.670 −67.825 −3.378 −1.339
κ4 (·) 2.901 5.588 0.542 1735.303 23.987 4.381

48 κ1 (·) −0.016 0.000 0.000 −0.451 −0.422 −0.245
κ2 (·) 0.969 1.000 1.000 1.920 2.195 1.421
κ3 (·) 0.750 0.845 0.491 −4.102 −1.689 −0.981
κ4 (·) 0.824 1.397 0.322 17.854 5.997 2.379

288 κ1 (·) 0.020 0.000 0.000 −0.146 −0.172 −0.140
κ2 (·) 0.984 1.000 1.000 1.148 1.199 1.139
κ3 (·) 0.292 0.345 0.279 −0.833 −0.690 −0.558
κ4 (·) 0.182 0.233 0.122 1.133 1.000 0.759

1152 κ1 (·) 0.024 0.000 0.000 −0.063 −0.086 −0.079
κ2 (·) 1.002 1.000 1.000 1.044 1.050 1.044
κ3 (·) 0.169 0.172 0.159 −0.365 −0.345 −0.317
κ4 (·) −0.004 0.058 0.044 0.184 0.250 0.236
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Table 2. Coverage probabilities of nominal 95% confidence intervals for IV

Normalized Statistic Sh Studentized Statistic Th

h−1 IAT−S IEE−S
inf IEE−S

feas IAT−T IEE−T
inf IEE−T

feas i.i.d Boot

GARCH(1,1) diffusion

One-Sided
12 98.34 95.18 79.34 82.69 89.87 87.93 93.27
48 96.31 95.07 87.96 89.74 93.47 92.98 92.74
288 95.56 95.07 92.37 93.03 94.82 94.79 94.33
1152 95.89 95.61 94.40 94.01 95.57 95.58 94.56

Two-sided symmetric
12 95.68 94.85 84.42 86.08 93.14 90.13 93.75
48 95.50 95.28 91.94 92.32 94.59 93.99 94.87
288 95.32 95.26 94.47 94.57 95.01 95.00 95.18
1152 95.14 95.14 95.30 94.81 95.41 95.40 94.97

Two-factor diffusion

One-sided
12 99.90 95.42 72.67 75.69 89.34 82.18 93.27
48 98.28 95.52 81.90 84.52 92.45 88.95 94.63
288 96.36 95.26 90.27 90.27 94.64 93.65 95.10
1152 95.76 95.29 92.71 93.20 95.04 94.83 95.02

Two-sided symmetric
12 96.08 93.48 78.08 78.94 96.88 84.98 90.13
48 95.71 95.00 86.85 87.95 95.44 90.50 92.83
288 95.32 95.17 93.48 92.83 95.37 94.66 94.59
1152 95.11 95.07 94.41 94.64 95.22 95.05 95.20
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Table 3. Summary results for the studentized statistic Th under microstructure noise

GARCH(1,1) diffusion

h−1 ψ

E(v2
t )

= 0.05% ψ

E(v2
t )

= 0.1% ψ

E(v2
t )

= 0.5%

12 Finite Sample Cumulants
κ1 (Th) −0.510 −0.469 −0.184
κ2 (Th) 2.820 2.690 2.099
κ3 (Th) −15.64 −13.24 −7.546
κ4 (Th) 214.78 149.80 55.99

Coverage Probability of 95% intervals
One-sided IAT−T 83.21 83.95 88.08
One-sided IEE−T

feas 89.01 89.59 92.45
Two-sided IAT−T 86.51 86.85 90.42
Two-sided IEE−T

feas 91.11 91.39 93.92
48 Finite Sample Cumulants

κ1 (Th) 0.030 0.255 1.512
κ2 (Th) 1.122 1.027 0.646
κ3 (Th) −1.040 −0.881 −0.380
κ4 (Th) 2.331 1.746 0.528

Coverage Probability of 95% intervals
One-sided IAT−T 92.93 95.37 99.77
One-sided IEE−T

feas 95.78 97.43 99.89
Two-sided IAT−T 94.33 95.11 69.56
Two-sided IEE−T

feas 96.19 96.83 79.86
72 Finite Sample Cumulants

κ1 (Th) 0.255 0.632 2.487
κ2 (Th) 1.028 0.915 0.533
κ3 (Th) −0.691 −0.570 −0.201
κ4 (Th) 0.917 0.724 0.186

Coverage Probability of 95% intervals
One-sided IAT−T 95.46 97.92 100.0
One-sided IEE−T

feas 97.17 98.67 100.0
Two-sided IAT−T 94.73 92.71 21.82
Two-sided IEE−T

feas 96.40 94.92 29.43
288 Finite Sample Cumulants

κ1 (Th) 2.690 4.414 8.967
κ2 (Th) 0.750 0.671 0.397
κ3 (Th) −0.163 −0.107 −0.047
κ4 (Th) 0.062 0.032 0.010

Coverage Probability of 95% intervals
One-sided IAT−T 100.0 100.0 100.0
One-sided IEE−T

feas 100.0 100.0 100.0
Two-sided IAT−T 19.65 0.34 0
Two-sided IEE−T

feas 21.07 0.40 0
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Table 4. Empirical Results for US$/Yen and UK-Pound/US$.

Days RV RQ Raw Asy. Theo. Log Asy. Theo. Edg. Exp. Theo
OS-R TS-L TS-R OS-R TS-L TS-R OS-R TS-L TS-R

1 0.074 0.022 0.124 0.014 0.133 0.145 0.033 0.165 0.144 -0.008 0.156
2 0.120 0.036 0.184 0.043 0.196 0.204 0.063 0.226 0.205 0.026 0.214
3 0.156 0.050 0.230 0.066 0.245 0.252 0.088 0.276 0.259 0.039 0.272
4 0.189 0.046 0.261 0.103 0.275 0.277 0.120 0.298 0.279 0.091 0.287
5 0.227 0.125 0.346 0.086 0.369 0.383 0.122 0.423 0.382 0.058 0.397
6 0.288 0.121 0.404 0.148 0.427 0.432 0.177 0.467 0.440 0.121 0.454
7 0.345 0.697 0.626 0.011 0.679 0.778 0.131 0.909 0.794 -0.254 0.945
8 0.435 0.369 0.639 0.191 0.678 0.695 0.248 0.761 0.712 0.124 0.745
9 0.581 0.784 0.878 0.226 0.935 0.969 0.315 1.069 0.997 0.104 1.058
10 1.559 3.245 2.163 0.838 2.279 2.298 0.981 2.475 2.332 0.719 2.399
1 0.324 0.500 0.561 0.041 0.607 0.674 0.135 0.775 0.664 -0.076 0.723
2 0.091 0.025 0.144 0.028 0.155 0.163 0.045 0.183 0.163 0.011 0.171
3 0.065 0.005 0.088 0.038 0.092 0.092 0.043 0.099 0.095 0.033 0.097
4 0.227 0.132 0.349 0.081 0.373 0.389 0.119 0.431 0.398 0.030 0.423
5 0.083 0.026 0.136 0.019 0.147 0.158 0.038 0.179 0.154 0.004 0.161
6 0.508 0.702 0.790 0.173 0.844 0.884 0.263 0.983 0.887 0.085 0.931
7 0.225 0.271 0.400 0.016 0.433 0.489 0.089 0.568 0.493 -0.115 0.564
8 0.113 0.013 0.151 0.068 0.158 0.158 0.076 0.168 0.160 0.063 0.163
9 0.118 0.035 0.181 0.044 0.193 0.201 0.063 0.223 0.207 0.016 0.221
10 0.337 0.270 0.512 0.129 0.545 0.566 0.182 0.625 0.582 0.055 0.619
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