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This supplementary appendix is organized as follows. In Section S1, we first provide an auxiliary
lemma and then provide proofs of the general bootstrap results appearing in Section 3 of the main
paper. In Section S2, we establish the results appearing in Section 4 of the main paper. In particular,
this section contains the asymptotic expansion of the cumulants of the asymptotic test statistic 7T,
and its bootstrap versions T)* and T*. The limits of these cumulants are derived by relying on some
auxiliary lemmas that are introduced and proved in this section of the appendix. Detailed formulas
useful for the implementation of the log version of our tests are provided in Appendix S3. Finally,
Section S4 presents the theoretical justification for the local Gaussian bootstrap when applied to two
alternative jump tests: the test of Podolskij and Ziggel (2010) and the big jumps test of Lee and
Hannig (2010).

Appendix S1: Proofs of results in Section 3
We first derive the first and second order bootstrap moments of (RV*, BV,*). Note that since rj =
\/ 0 - m;, we can write
RV: =37 -wi and  BVi= 5> (9}) 2 (M2
i=1 L =2

where u; = 12 and w; = |n;—1| ||, with ; ~ ii.d. N (0,1). The bootstrap moments of (RV:, BV,*)’
depend on the moments and dependence properties of (u;, w;) . The proof is trivial and is omitted for
brevity.

Lemma S1.1 Ifr} = /0] -n;, i=1,...,n, wheren; ~ i.i.d. N(0,1), then

(al) E* (RV*) = :fjlog.
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(a2) E*(BV;) = 3. (i7,)"2 (0

1=2

(a3) Var* (yiRVY) = 2n j;;l (72

(ad4) Var* (VaBV;) = (k;* = 1) n § (60 (67,) + 2 (k72 = 1) n > (@02 (07, (075) .

1=3

(a5) Cov* (AR fBV*)—nz«“f’”( DY 10 s ()2 (o7 )2

1=2
Proof of Theorem 3.1. We first show that

Ry RV: —E*(RV?) \ &

in prob-P. Write
n n
Zr =51y Die; =vn'y 2,
i=1 i=1

. 1/2D e;, and

0" 0 w; — E*(u;) >
D, = o 12 |, and e = ! o ,
(0 B (o) (0,) ) (o)

where we set 0 = 0 and where u; = 77 and w; = |n;| [n;—1] and n; ~ i.i.d. N (0,1). Note that e} is a
zero mean vector that is lag-1-dependent. We follow Pauly (2011) and rely on a modified Cramer-Wold
device to establish the bootstrap CLT. Let D = {); : k € N} be a countable dense subset of the unit

circle of R2. We have to show that for any A € D, X' Z* a N(0,1), in prob-P, as n — oc.

From Lemma 3.1, we have Var*(N'Z}) = 1 for all n. Hence, to conclude, it remains to establish that
N Z* is asymptotically normally distributed, conditionally on the original sample and with probability
P approaching one. Since z;’s are lag-1-dependent, we adopt the large-block-small-block type of
argument to prove this central limit result (see Shao (2010) for an example of this idea). The large
blocks are made of L, successive observations followed by a small block that is made of a single

with 27 = X,

element.
Let £, = | 1 +1} Define the (large) blocks £; = {i e N: (j —1)(L, +1)+1<i < j (L, +1)—1},
where 1 < j </, and Ly, 1 ={i € N : lp(Lp+1)+1 <i <n}. Let Ur = Eieﬁj Nzf,jg=1,...,0p+1.

Clearly,
ln+1

NZy=vny_ U*+\FZAZ (Lnt1):
j=1
Next, we show that under Condition A,
(i ) fz )\’ Lnt1) = = op«(1), in prob-P; and

(i )forsome5>0
ln+1

S AN
j=1
This latter is sufficient to deduce that \/n Zg’:[l U; 4 N (0,1), in prob-P, since {U;} form an

independent array, conditionally on the sample. The expected result then follows from (i). Let us



establish (i). Since E*(z}) = 0 for all 4, it suffices to show that Var* <\/ﬁz N2, +1)> =op(1).
Letting Q¥ = Var* (\/ﬁ Z;’;l Dj(Ln+1)€;(Ln+1)) , by the Cauchy-Schwarz inequality, we have:

. /2 cyx goe1/2 w1721 o
Var WZ S ||| = | sz A < = e

2 2
2 60
surely. Hence E;“;W = Op(1). Turning to Q}, since L, > 1 for n large enough, z* X
independent along j conditionally on the sample so that

Condition A and Lemma 3.1 ensure that X} LA ( )I () which is positive definite almost

Ln+1) s are

=Y Dyt B (e &izaen) e
=1

By the triangle and the Cauchy-Schwarz inequalities, we have:

”Q*” < TLZ HD Ln+1 HE* ( i Ln+1) Ln+1 )H < an HD Ln+1)H2’

where C' is a generic constant. Hence,

0 < 00 5 ((30) + 2 () (Pnens))

J=1

< on S (i) +C 2( ) m( > ( )2)1/2
< Cn ol + n n op
= J(Ln+1) j(Ln+1) =
= op(1) +op(1)0Op(1) = OP(l)
with the equalities following from Condition A. Next, we verify (ii). Let § > 0. Forany 1 < j < ¢, +1,

we have
244

245 —1/2?H0
i = |2 X <L |2 3 D e P

where the inequality follows from the Jensen’s and the Cauchy-Schwarz inequalities. It follows that

249 240
B Uy [ < L 2| S D B e P < on T Y o

ieﬁj 7;6[:]'
implying that
Ln+1 5 5 bt
Z E* }\/EU;}Q-F < Cn1+5/2L$L+5 2271/2 Z Z ||D H2+5
=t Jj=14ieL;
I+l
Jj=1ieLl;
n
< CntTORLE s 2+5Z<(@?><2+5>+<@?>235 (@?1)2?)
i=1
< C HZ:—1/2H2+5 no(1+6)=5/2 ( 146 Z 2+5 ) —Op (na(1+6)—5/2> ’



where the second inequality follows from the Jensen’s inequality (recall that C' is generic constant)
and the last one follows from the Cauchy-Schwarz inequality, given that L, = Cn®. Since a € [0, %),

29 € [0,6). Choosing any § € (13%’6) ensures the last equality, given Condition A(i)) and (ii).
This establishes (S1.1)).

By the delta method, we can claim that \/n(RV,} — BV,; — E*(RV;; — BV;)))/\/Vi¥ &, N(0,1) in
prob-P, with V¥ = Var*(y/n(RV, — BV,*)). Therefore, to conclude, it suffices to show that V¥ —V* =
op+(1), in prob-P. From Lemma 3.1 and Condition A(i), V' £, 7IQ. Hence, it suffices to show that
f@; = IQ + op+(1), in prob-P. We can claim this by observing that E* (f@i) = I1Q + op(1) and

ar* (I/@Z) = op(1). Indeed, it is not hard to obtain that E* (I/C\QZ) =n " (02300 )23 (07 5)?/3
and that

) - e
+ngz 2/3 4/3 (@?72)4/3 (@?73)2/3

4 ng Z 2/3 2/3 (@?72)4/3 (@?73)2/3 (@?4)2/3> :

for some constant C' that does not depend on n. The desired result follows from Condition A(i).

Proof of Theorem 3.2. Strong asymptotic size control: Since T, SN (0,1), in restriction to Qo,
for all measurable subsets S of g, we have P (T,, < z|S) — ®(z), as n — oo, where ®(x) is the
cumulative distribution function of the standard normal random variable. Also, since the bootstrap
is valid on Qy, in restriction to this set, we have P*(T)} < x) 5 ®(x). Thus, by continuity of ®(-),
sup,er |[P* (T < z) — P(T,, < z[9)] L0 Asa result, letting g;, ;_, denote the bootstrap (1 — «)-

quantile, we have P(T,, > q;"lvlfa\S ) 2 o. This establishes that the bootstrap test controls the strong
asymptotic size.

Alternative-consistency: Since in restriction to ; we still have under Condition A that T*
N(0,1), in prob-P, we have T;; = Op+(1), in prob-P. As a result, we can claim that g, ;_, = Op(1).

Since T}, L 400 on €21, it is clear that P({Tn < qq*%l_a} NQ;) -0 as n — oo. This establishes the
alternative-consistency of the bootstrap test.

To prove Lemma 3.2, we rely on the following auxiliary result, the proof of which is omitted since
it follows from simple algebra.

Lemma S1.2 Let {a;:i=1,...,n} be any sequence such that for i =1,...,n/M, aji;_1y» = G,

j=1,...,M. Then, for any (s1,...,sk) € RE, letting s = Zszl s and 8 = Ele s1, we have that
for M > K —1,

n/M K—-1n/M
> H 0P = (M=K +1) Y (@) + Y Y (@)™ (a-1)"
i=1 k=1 j=1 k=1 j=2
Proof of Lemma 3.2. For: =1,..., % and j = 1,...,ky,, let us denote 07 (= 1)kn by v;. For k,
large enough, by Lemma we have
a n/kn 1 n/kn 1 K—1n/kn B B
144 ki g g a a—dy,
1+4 ZH zk+1 2—72 (nv;)2 + l—K)ﬁval2—|—ﬁ (nv;)2 (nv;—1) 2
i=K k=1 i=1 k=1 i=2



Using the notations of Theorem A.1, note that nv; = ¢ ,,. Hence, by this theorem,

1
/ oldu.
0

n/kn n/kn

=&
I
B
NI\Q
[
=&
[4
lO\hQ

This also shows that

i,
~ ) (nvi)2 = Op(k;") = op(1)
i=1
Thus, to conclude, it remains to show that, for any k =1 K-1
1 n/kn B B 1 n/kn B B
@ q—qy, R ag q—qy
I ;(n%) 2 (nvj—1) 2 = n - (Cin) 2 (Gim1n) 2 =op(1)
For z,y € R, let g(x,y) = \x! . We have that
l9(e,y)| < max (1, (Jo] + |y\>%) <1+ (ol +1yD? <1+ (lol? +1y2) < € (1+ 1ol + 1y)#)

for some C; > 1 where the third inequality follows from the C,-inequality. Given Theorem A.1,

n/kn

kn A ~ P !
? Z g(Cz‘,mCi—l,n) — Uzdua
0

=2

hence
n/k

-~ Z Cz ns Ci— ln OP(kgl) = OP(l)‘

Proof of Theorem 3.3. It suffices to verify Condition A(i) and A(ii). Take Condition A(i). If
X is continuous, by Lemma 3.2, A(i) holds for all ¢ € R; and in particular for ¢ € [0,8]. If X
is not continuous, let § = 8 and 0 < ¢ < g. If ¢ < 2, the convergence statement in A(i) holds,
glven Lemma 3 2. If 2 < ¢q < @, since ¢ — (¢ —1)/(2¢ — r) is an increasing function on [2,q],
w > 16 - =5y 2 2qq lr, and Lemma 3.2 implies the convergence statement in A(i). Next, consider
Condition A 1% If X is continuous, given Lemma 1 of Barndorff-Nielsen, Shephard and Winkel (2006),
|ril = Op(1/(log(n))/n), uniformly over ¢ = 1,...,n. Thus,

[n/(Ln+1)]

n Z (6?(Ln+1))2 = Op(n*a(log(n))z) — op(l),

=1

for all o € (0,2). Hence, A(ii) is fulfilled. If X is not continuous, thanks to the truncation, we have

that
[n/(Ln+1)]

2
n Z; <"7;L(Ln+1)> =0p (nz""ujﬁ) = Op (n27a74w) .
j=

Note that

4 — 2r
2—4w <
16 — r

<

=N

Hence, A(ii) is fulfilled as we can choose a € (2, 2).



Appendix S2: Asymptotic expansions of the cumulants of 7, T and
T
Tn
In this section, we provide proofs for the results in Section 4. We start by introducing some notations
and by presenting alternative expressions of T;,, T,y and 7, that are suitable for higher order expansions.

Then, we provide proofs of the main theorems, followed by useful auxiliary lemmas along with their
proofs.

. 1 _
We let vl = fé/fl)/n o2du, 7= Ofogdu and o0, = (?;’)qq/p, for any ¢,p > 0. Throughout

this section, FE(-) and Var(-) denote expectation and variance of the relevant quantities conditionally
on the volatility process o.
We rely on the following expression of the test statistic Tj,:

Tn=(S +A)<V">_1/2—(S +A)<1+1(U +B)>1/2 (S2.1)
AW, nt An 7 Un+ Bu : .
where
Sy = Spi— Spo= YolVa—EE) _ /n(BVn—B(BV)

VVa VVa

n n)— n n - n S n 1/2 n
Ay = VEERGIEEG) _ T (-1“1' - ;\vi_li/ lvz-r”z)

n < <
Vo = 75 3 il rica 3 riof*®

E(Vn> = Tné‘v?2’2/3 PP r=0—2= (k= 1) 42 (k72 —1) =2

V, = Var(yn(RV, — BV,))

n

— oy (up)? -2 [” S ()2 )2y ()Y (o) ]

=1
i=2 =3

Ji(BE(V) Vi 82 O 2/3 2/3 | n12/3
Bn = % = HWT 23 ’U?—Q‘ U?—l‘ ’U:L‘ /
=

n n n

2 | - 3 ) 00 - B ) ]

=1 1=2 =2

=2 [t 1) 35 () )+ 2 (2 = 1) 3 (o) ) (2

=2 =3

Similarly, for the bootstrap statistics, we have:

7y = VPRV = BV = B (RVE = BV)) (g0, o) <1+
V*

n

1 . . —1/2
= Ui+ Bn)> (S2.2)



_ * _ BY* — E* * _ BY* 1 ~n ~n B 1 71/2
v v n
(92.3)
where:
S* — §f. _ G = VRV —E*(RV}))  /n(BVy—E*(BVy))
n n,1 n,2 — \/VTT \/VT:
A = 0
I~ 1vaGren)
n 2 \/‘7’;
gr - VAP (E)

Vi = Var (f(RV*—BV;))
=)+ (k= D S (5) (57,) + 20672 = n S (02 (51,) (60)

i=1 =2 =3
o 3 7)Y (o) - 2m 3 (o) (o)
B — \/E(E*(V‘Z;)_vn) _ R\ZQ o 2‘2/3 o 1}2/3 Anlz/g
2 |- 3 (o) o0 - 3 o) |
(k= 1) £ ) on 42 067 1) 52 (01) 1) )

S2.1 Proofs of the main results
Proof of Theorem 4.1. The first and third cumulants of 7T;, are given by
k1 (Ty) = E(T,) and w3 (Tyn) = E(T2) — 3B (T2) E(T,) + 2[E (T,)]°.
Following Gongalves and Meddahi (2009), provided that these two cumulants exist, we identify the
terms of order up to O (nfl/ 2) in their asymptotic expansions. We first derive the first three moments

of T,, up to O (n~'/2). For a given value k, a first-order Taylor expansion of f(x) = (1+ x)_k/Q
around 0 yields flz)y=1- §x +0 ( ) We first derive the moments of T;, up to O (n_1/2) . Using

Lemmas and. we have 4, = O (n *1/2) and B, = O (1). Thus, using (52.1)), we have:

TF = (S, + An)F — (Sn + An)" (Uy + By) + Op (1)

Kk
2n
= ij + Op (n_l) .



Hence, for k£ =1, 2,3, the moments of T /f are given by

B(T) - E<sn+An>—2jﬁE[<sn+An> (U + B)]
— E(S,) + A, _W[ (SnUn) + BuE (Sp) + AnE (Uy) + Ap By
_ E(S.Un)
= +§’+O( Y,

B(T2) = (S.+ 4.7 - jﬁ [(Sn + An)? (U + By)]

— B (S2) + 24,E (Sy) - \}ﬁE (S2U,) - E (52) iﬁ Lo
- 1B (S0 —i% Lo,
——
=bon
and
E(T3) = E(Si+40)° - Q\%E[(sn + A) (Ua + By))
= E(S2+34,57) - Q%E[SS; (Un+ Bn)] +0(n™")
- E(sg)_23fE( U,) + 34, E(s2)_27E(B 253) + 0 (n71)
3 3 B, _
= E(S%) - N (S3U,) +3A, — Vo (S3y+0(nh)

Eb3,n

where we used E (S,) =0 and E (S2) =1 (see Lemma in the next subsection). Below, we let

B 3B
bin=An, bon=——2, and by, = 34, — ——2FE (53).
17 2, \/ﬁ an 37 2 \/ﬁ ( n)

It follows that

E (S,U,
K1 (Tn) = —(2\/?11) + b17n, (S24)

3 E(S,U, E(S,U))?  (E(S,Up))?
k3 (T,) = E(S3) - 27E (S3Un) + bsp +2 [b], — 3bin(2\m) + 3b1,n( ( = L _ (8n3/2 )
E(SaUn)  bin oo E (SnUn) E (S3Un)  E(SuUn)
- n n - n- 5 - . E n - n
3 bl, bQ7 bQ7 2\/ﬁ (SnU ) + o 2\/ﬁ + bl7
= k31 (Tn) + K32 (Th), (S2.5)



where

3E(S.U,) 3 E(SyUn) E(S2U,) | (E(SpUn))?
Tn = F 3 — nen’o_ E 3 n) — n nYn
a1 (Tn) () + 3= m 2yl aln) =3 2n a0 20
E(SnUn)  bim /oo
T,) = - — — by 2R
H372( n) b37n 3b17n 3 |:b17nb277’b b277’b 2\/ﬁ f (SnUn):|
E(S,U,) (E (SpUp))?
3 2 = \~n¥n) \E\Wnbn))
+2 b — 36— 7 + 3y

Therefore, from Lemmas [S2.5(a2) and we can write

k1 (Ty) = \}ﬁm to (%) .
with

2., 2 2, 2
. oy t+ o1 oy + 01 .
K1 = K11+tK12, K11 = nh_{go\/ﬁbl,n = = K12 = lim |—

2\/7'f01 oldu 2V Tot e
where a; is defined as in Lemma [S2.5(a2). Similarly, for the third cumulant, we have

K3 (Tn) = \}ﬁﬁ3 +o <\}ﬁ> ,

where
K3 = K31 + K32,
such that
Kg}l = hm \/ﬁligyl (Tn)
n—oo
3 3
_ . 3 o R T 3
= nl;n;oﬁE (Sn) + QHIEI;OE (SnUn) ingroloE (SnUn)

3
= [az +3 (a1 — a3)} 76,4,

with ag, a1 and a3 given in Lemma The other terms in \/nkg1 (T,,) have zero limit:
K32 = Pnlij{.lox/ﬁffw (Tn) = 3k12 — 3k12 =0,

where we use in this derivation Lemma and the fact that A4, = O (n_l/ ?) and B, = O (1).
Proof of Theorem 4.2.  So long as A% = Op(n~'/?) and B} = Op(1), we can use the same
arguments as in the proof of Theorem 4.1 and claim that

_ET(S5.U,)

k1 (1) oun + b1 s (52.6)
k3 (Ty) = k31 (1) + k3o (T5), where (52.7)
* * _ * *3 e n-n/ __ * *377*) _ n-n n_-n _ n-n

k5, (Iy) = E (Sn)+2 NG 2\/ﬁE (Sp°Uy) -3 5 T , and

E*(SxUx)  bi,
’€§,2 (T;) = b;,n - 3b>{,n -3 |: T,nbg,n - b;,nM - —= E” (S:L2U;:):|

2y/n vn
(E* (S3U;)°
4n

+2 | b75, — 3blfnﬁ + 301,

9




with B 3 B*
T,n = A;kz =0, b;,n = _7% and b;,n = SA:L - 5\/% : (5:13) :

We can write:

K1 (Tn) = %/{1 =+ op <\/ﬁ) and K/3 (TTL) = %1{3 + op (ﬁ) .
By Lemma we have
H,T = plim\/ﬁ/ﬂ'{ (T;:) = K12 ;é K1

n—oo
and
w3y = plimy/nkg; (T)) + plimy/nks o (T))) = K31 + K32 = k3.
n—oo n—o0
We recall that A% = 0 = Op(n~/?) and Lemma (a6) ensures that B = Op(1), which concludes
the proof.
Proof of Theorem 4.3. From Theorem 9.3.2 of Jacod and Protter (2012), we have that

p lim nof = o2 and plim nd" = o}
n—oo n—oo

showing that A} = Op (n_1/2). Using the same arguments as in the proof of Theorem 4.2, it follows
that <} (T; ) and k3 (T;f) are given as in 1} and 1} respectively, where we now set

B 1 7 7 B* _ B*
bro= A* = Lyn (@t +a) " and b5, = 347 — 3 B o (2.

n=h= BT NG
Letting 7} = pnli_{rolo\/ﬁ/ﬁ (Ty) and "5 = pnli)n;o\/ﬁ/f}g (T) ®3,, we have:

* [k 1 =k 1 * [k 1 =k 1
K1 (Tn) = %/{1 + op <\/ﬁ> and /4)3 (Tn) = ﬁlig + op <\/ﬁ> .

Using the expansions in (S2.6) and (S2.7), Lemma [S2.6| and the fact that p lim \/nbj , =
n—oo ’

2, .2
ogto1

2\/7’?7

we

can conclude that
ET =K1l + K12 = K1 and Eg = K31 + K32 = K3.
S2.2 Auxiliary lemmas

Lemma S2.1 If the volatility process o is cadlag and locally bounded away from 0 and fg o2du < oo
for allt < oo, then, for any q1,q2,q3 > 0, we have that

n—2 n

n-tataeta (Z(U?)QI (szt+l)q2 (U?+2)qg _ Z(U?)qﬁqﬁqa) — Op(n_1/2).

i=1 i=1

Lemma S2.2 If the volatility process o is cadlag bounded away from zero and fg o2du < oo for all
t < oo, then for any q1,q2,q3 > 0, such that ¢ = q1 + q2 + g3 > 0, as n — oo, we have that

n K
n~ita/? Z H (U?,kH)Qk/Z 250, (52.8)
i=K k=1

with K € {1,2,3}.

10



Lemma S2.3 If Assumption V holds, then, as n — 0o,

(0§ + 07),

N |

with v} —fz L o2du.

Lemma S2.4 Let X; be described as in (10). Then, conditionally on the path of volatility, for i =

1,...,n, 7 ~ N (0,v), where v} = f(i/nl)/n o2du and the following results hold:
(al)
E(Snl) =0 andE(Sng) =0

(a2)

T (k% ki — ki) > i3 (”?—2)2/3 ( ?—1)2/3 (U?)E)/S

B(Sual) = = ont | 30 (o) (o) 0

5 " +20s (01712)2/3 ( ;11)5/3 (U?)Q/g
(a3)

2 _ 1213
E (Sp2U,) = T<k%k% klk%) 2| s (Uz'n—Q)2/736(”?—1)7/766(7)?)7/6
’ k%kévs/z + 305 () / (vi1) / (vp)*?
25 _ 1213
P ) T ) ) ) ]
k%k%Vf/Q +2 i (U?—s) / (Uzn—z) / ( 1—1) / (U?)lﬂ
(a4)
E(S2,U,) = O(n~1?).
(a5)
E (Sp,18n2Uy) = O(n~1?).
(ab)
E (82,U,) = 0(n~"/?).
(a7)
ke — 3ky + 2 N
E (5271) _ (s 3; ) 3/2 Z (v; )3
Va i=1
(a8)
(k1k5 — k2k4 — 2k1ks + 2]{!2) 1 n \1/2, n n n \5/2, n
E (SEL,ISTLQ) = 1l<:2 3/2 Lo/ - (Uz’—l) / (vf )5/2 + ZQ (%‘-1) / (v; )1/2

(k% — 2k1ks + k:
2
K2V

3/22 o 1)3/2 3/2_

11



(a9)

2(1 — k3ks + kt . " no\2 ) m
E (Sn,ISZ,z) = ( k‘ﬂl/}?/Q ! n’/? Z [(%71) ()2 + (vita)” (vf )}
2 (k7 — kiks + k) n ) a1/2 | o2 (on \Y2on \1/2
+ kilvng/Q 3/22 [ ) COREEN 0 (vita) 7 (vi) }
(kiks — kiks — ki + k1) 3/ DV (00)) (P2 4 ()2 (u,) (o)1
+ k‘lang/Z Z { 1) (V)77 (0i) T (i) (o) }
ki — k? — kiks + kiks) 32 o) (o 1/2 s fom \1/2 / m \3/2
+( 1 1164‘/13/2 3/22{ / o) (o) / + () (v ) / (v,) / } .
1Vn
(al0)
B 53 . (k'g — 3k‘% + le 3/2 3/2 3/2
( n,2) - k6V3/2 Z
1vn
2(/€1k3—k%—2k‘f+2k 1/2 o )32 n \3/2 , n\1/2
RO 5 ) )0
1Vn
2k6—2k4—/€2+k1k3 n n \3/2, n n \1/2/ n n
+( : klﬁiV;?/; n3/2 Z [(%—2) (vit1) / () + (vits) / (o) (Ui-i-l)]
6 (kY — 2kt + k7) 12 o ny (o \1/2
2 s 3 ) () 00) ()
1vn
(all)
3 (k= ko) (S0 01)%)) (Bksg — 49)
3 nofom \2/3 0 m N\2/3
B (88,00) = —% Sis (012)° () @ 1| o),
’ k3 vl | x|+ >y (Ui—2)5/3 (”?—1)2/3 (U?)WS
3
3 (070) " (o) o)
(al12)
5 T nd
E(S5,150,2Un) = W*g[(l) +(2)],
Ry
where

(zwwwow PP S >7/6<v?2>7/6> n

S ()3 (0 )2 )T )2
2 o 7
kaky (kg = uky ) | S v gumyriogu 25 g 2

i

+0(n™1),

12



and

@) =2 x { ks = huka) (D)0 )+ D) (e |

i

X {k (ki — koks)

< 5/3 1)”_ 2/3 )2/3+Z( )2/3( n_ )5/3( )2/3+Z( 2/3( )2/3( n_ )5/3)}

+O(n ),
(al3) \
E(Sn,182 5Un) = kj,;4 ; (3) + (4],
where
(8) = (K—ki)k (lm —k2k4)2vz o
« (Z( m)3/3 (1 )23y 2/3+Z m)2/3 (3034 2/3+Z m)2/3 ()23 (yn )5/3>
+0(n™)
and
(4)= 2x (k%(k? - k%)Z(U?H)l/%?(”?—ﬂlm) x {ké(kg - k2k§)
(S P ) + S )PP + S PP |
#2x fhalha = kuka) (S22 + S0 20007 )}
Ly 0 = 3) (ST 7o) + )0
S AR OGN
ik (kg —kiky) (i ()3 (0 )30 /S )12 )}
(al4) ,
B4 = i 710)+(7)

13



where

(6) + (7) = 3 x {(k% - k%)vav;f:l} .

L (12 - 1903) (SO0 OE DT + Dl )
P CNE L IR L IR

+k1k? (kz — k1ka [, n " n
' 4< 5 ' 4> +Z(vi+2)2/3(vi+1)2/3(vi )7/6(%—1)1/2

+0(n™4).
Lemma S2.5 Let X; be described as in (10). Then, conditionally on the path of volatility, for i =
1,...,n, 7~ N (0,0, where v} = fé/:ll)/n o2du and the following results hold:
(al)
E(S,) =0 and E(S2) = 1.
(a2)
lim E (S,Up) = a106 4,
n—oo
where
Y R R -
=—|3—=-2 -2 1] ~ —1.792629988661774.
U TR TRk
3 3 3
(a3)
lim \/EE (Sg) = 02064,
n—oo
where
(k5 + 2k‘3) (4 — kg) ks 15 ks kg
=—= | k 3ky — 6 6 12— 4+ — —6—= — = | =~ 1.958608591285652.
“ T?>/2<6Jr ! R e I B SR
(a4)
lim F (SgUn) = 3064,
n—oo
with
Fo 30018 k2 ki k
= (33421 4+ 5 - 305 30— — 122
R R R R R Y
3
k2 k2 kskw ko o kak kskz
6 —6 — 36 9 18 24 24
T T o TR e T T R =T
3 3 3 3 3 3
~ 33.52851853541578.
(a5)
VnE (S2U,) =0 (1).



Remark 1 The bootstrap analogue of Lemma [S2.4] replaces v} with the local measure of volatility
07 and V;, with V¥, yielding for example

. (ke — 3ks +2) —~
13(5%1)::AAEL};;§%4447n3/2:£:(U 3

Lemma S2.6 Let X; be described as in (10). Then, conditionally on the path of volatility, the fol-
lowing results hold:

(al)
E*(S:) =0 and E* (S}*) =1

(a2)
plimE* (S, U,) = a106 4,

n—o0

where ay is as in part (a2) of Lemma[S2.5

(a3)
plim [vE* (S3*)] = az06.4,

n—o0

where as is as in part (a3) of Lemmal[S2.5

(a4)
p lim E* (S*3U*) = a306.4,

n—oo

where ag is as in part (af) of Lemma[52.5

(a5)
VRE* (S:2Ur) = Op (1).
(a6) If in addition n = O(k2),
By =0p(1).

n

S2.3 Proofs of auxiliary lemmas

Proof of Lemma Let 05, = (v?)l/z. We first show that, for any ¢1, g > 2,

n—1 n
D)™ (0f)® = () = Op(na~ ), (52.9)
i=1 i=1
We have:
n—1 n n ( )
21 2 2(q1+
Z(vz >Q1( H—l)q2 - Z(U?)‘h—i_(p = 1(1111 14321 n_ Zai,:l ‘I2
i=1 i=1 i=1
2 2 2 +
< o ( H({Ql,n_ zf) + o, (ql 2

IN

1 1
2 /n—1 2
§ : 4q1 § : 292 _2q2\2 (111+Q2)
g; 2,n Uz+1,n Ui,n ) + Op

=1

15



The last inequality follows from Cauchy-Schwarz inequality. Thus, with ¢; = /no; ,, we have:

Note that following the same argument as Barndoff-Nielsen and Shephard’s (2004) proof of their Eq.
2

(14), we have: 1;’s are uniformly bounded by sup; <, o(s) < co and 37—} (wi‘ﬁ — wiz'p) = Op(1).

This establishes (S2.9)).

To complete the proof, we have:

n—2 n
n\q1 (7 \q2 (7 \G3 __ n\q1+q2+q3
E (i)™ (1) ® (vi%2) E (v7")
=1 i=1
n—1
291 242 2q3 o203 2q1 2924243 2(q1+92+43) 2(q1+q2+q3)
< imn Titln ( Oiton — 0411 n> § :0 in%itln 2 :Ui,n + On,n
=1

= Ian+bn|+a,%§gl+qz+q3> = yan+bn|+0p(n )

From ([S2.9), we can claim that b, = Op(n%_ql_qrqi‘). It remains to show that a,, = Op(n%_ql_qrqi‘).
By the Cauchy-Schwarz inequality, we have:

1 1
2 /n—2 9 2
§ : 4q1 ola § : 2q3 2q3
Oin Titin Oiton ~ Oitin
=1
1
n—1 9 2
§ : ¢2q3 _¢2q3

141 [ :

1 n—1
1o o aq, 4
q1—q2—q3 _ q1 q2
n2 n E :% Vit
i=1 i=1

By the same arguments as previously, we conclude that a, = Op(n%fqrqr%), which concludes the
proof.
Proof of Lemma Write:

IN

|an|

S

IN

n

n K n K
- 1ta/2 Z H (U?_kﬂ)qkh_ﬂ — o lta/2 [Z H (v?_k+1)Qk/2 _ Z (v?)q/Z

1=K k=1 1=K k=1 =1

n—1ta/2 Z q/2

From Lemma the first term in the RHS is op(1) and by Riemann integrability of oy, the second
term is op(1) (see Barndorff-Nielsen and Shephard (2004, p.10).

Proof of Lemma We use a similar expansion to that of Eq. (13) of Barndoff-Nielsen and
Shephard (2004). Let oy, = (vf)l/Q. Then, 2, =3 1", UZn — > 5 0in0i—1n is equal to

n

n
2 Tin 2 2 2
E :Ui,n(Ui,n —0i-1n) + Ol = E 7(01‘@ - Uz‘—l,n) + 01
o 5 Oin T 0i-1n

Alternatively, =,, can also be written as

n

n n

Z 2 Z 2 _ Z Ji-1n 2 2 2
Oi—1n — Oin0i—1n + Onn = - - (Ui—l,n - Ui,n) + Onn-

— — i—2 Oin+ 0i—1n

It results that

O'zn 05— 177,( 2 2 )+1( 2 n 9 ) 1 n ( 7/27n70,12_1n)2+1( ) . ) ) C+D
72 Tin=0i 5\7 o =5 —(o o = .
Oin + 0i—1n gn Yimln/ T o ln T nn 2 (Uz nt+ 0i-1 n)2 9 \7LnT%nn n n

=

16

n—1 n L 1 n % n—1 9 %

1, 4 2 2 —q1—q2,),2
Z(Ul ) (vl )% _Z(vzn)qﬁqz <pzho® <nzwiq1> (Z (wifl _wiqz) ) 4n 0 q2¢n(‘h+q2)'
i=1 i=1 i=1 i=1



We show that nCy, = 0 and nD,, > 2(0% 4+ 0%) as n — oco. Since o2 is bounded on [0, 1] and away
from 0, we have: g2 = infy,e0,1] 02>0and, foralli=1,...,n, Jzn > %2 > (0. Thus,

n

n
Cn < Q-9 Z(Uzn - 0'1_1771)2.

80~ 4
=2
. Qi 2
Also, by pathwise continuity of o2, there exists &; € [%1, %] such that o2, = o oldu = Uii . Hence,

n

C. < 1 2 2 2

ntn = 2 (0&' O-ﬁifl) :
8% =

The L?(P)-Hoélder continuity of o2 implies that, for some K > 0, and for all i = 1,...,n,

) ) 225
B((02 02 )") <K 5.

It follows that

n
1
b (Z(Ug o ng‘—l)z) < K2* nn25 — 0,

i=2
as n — oo. We conclude by the Markov inequality that Z?:Q(Ugi - agiil)2 = op(1). It follows that
nC,, = op(1) since 1/0% = Op(1).
Next, using the fact that a% n = 51 with & € [ } we deduce from the right-continuity of o2 at
u = 0 that no? n 2 o2. We obtain along the same line that no?,, % o} using left continuity at u = 1

establishing that n.D,, % 1(0Z + o?).
Proof of Lemma In the following recall that ko = 1, k4 = 3, and kg = 15. Let

vn vn n’/?

K = 9 K = ? and K = .
3
Write

n n

Sn71 = Klnz (7“z2 - F (7'12)) = Kanai,
i=1 i=1
n n

Snz2 = Kon»_ (ririca| — E(Iririca])) = Kon Y biyio1,
=2 ;
n n

Uy = Ksy Z <‘riri—1ri—2‘4/3 -F (\Tirz‘—17“i—2!4/3>> = K3p Zci,i—l,i—Q-

=3 i=1

(al) Follows directly given the definition of S, ; and S, 2.
(a2)

E (Sn,1Un) 3/2 ZZLJ

3
k V =1 j=3

where

Lij = Ef(aicjj1;-2)

= B[ = or) (bryal Iy I = K (o) (00) 7 (o))

17



The non zero contribution to E (S, 1U,) are when ¢ = j; i = j — 2 and ¢ = j — 1. In particular,
we have

n
Z L; = Z E(a;cii—1,—2)
py =3

= ) F (\7“7;_2!4/3 i |2 s % — k% (W1 5) (o 1) 3 (o) Tﬂ)

1— K3

- <k2klo—k3)zn: ) (o) (o),

=3
n—2
Y L; = > E [7}2 (|7’i‘4/3‘7'i+1’4/3’ri+2‘4/3 k3( M (o) (U?Jrz)z/g)}
i—j—2 i=1
n—2
2/3 / n \2/3
- (k%%k? _k@ ;( o) (vf) / (v72) 2
and
n—1
S ngo= SB[ (Il e - K ) 2 (o))
i=j—1 =2
n—1
n \2/3 2/3
= (K k) 3 ) @ 1)
Therefore,
r(ihy —k3) [ T ()" ()" @)
B (5nln) = ;31/3/2 3 () (vy) (v)*?
n n n 2 n n
3 + 2 (Vi) / (”1—1)5/3 (v; )2/3
(a3)
2 n n
E (Sp2Up) Tn I; ;
k%k%VS/Q =2 j=3
where
Lij = E(bii-1cjj-1,;-2)

= B[ (Irical il = 6y for o) (irgeal lryea Y2y V2 = K3 (070)™ (0™ (o))

The non zero contributions to E (S, 2Uy,) are when i =j;i=j—1,i=j—2;andi=j+ 1. In
particular, we have

S hig = 0B [rcallnd (el friea 2 il =k (uia)*" (o)™ 27
i=j

1=3

= 3B (Iraal P raaa P il = K (010)* (010) " @) i i)

= (kB - R S () () ),

=3

18



(ad)

(a5)

n—1

Y Ly = Y E {In-l! |7 (\n’—1|4/3 i 3 g [ - k:% (v?_l)%( v (v z+1)2/3)}

i=j—1 i=2
= (kkd = KK ) 3 (012a) ™ ()™ )
n—2
S Ly o= DB il lrl (Inl"? bV Irical ™ = kS @3 (u1) " (0112)"7)|
i=j—2 i=2
= (kakdkr = K383 ) D (1) (01e) " (o) 01),
=4
and
S s = 0 E [l il (Il o a7 () (u1a) P 01) )]
i=j+1 i=4

= (kg = ) S (01) " (u1)” (o) ).
=4

It follows that

r (kak? = k3K
E(Sn,2Un) = - 3/2 n?
KRV,

S, (v?_2>ZQjﬁ(v?_N/?j(gvm”ﬁ ]
+> s (U?fz) (Uznq) (U?)2/3

Yoisa (vits) v (Uirlﬂ)?/ﬁ (vi 1)2/3 (U?)2/3 ] .

T (klk,@k; - k%kﬁ) n
— : n n \2/3 (. n \2/3 ;L 7/6 /. n\1/2
g (0 3) " ()™ (i) (v

2

KKV
3

We have
5/2 ™
(SnlU ;?VQ ZZZI”’“’
N =1 j=1 k=2

where
Ligu =B (17 =02) (13 = ) (Iru-al® Iria 9 Il 2 = k2 (0 0)"° (u0)™° 0)7°)] .
(S
k —

The non zero contributions to £ (S5 1Un ) are from triplets (7,7, k) in
1,k), (k- 2 kk),(k—1,k—2k),(k—1,k—1,k),

((k—2,k—2,k), (k-2
(e ke — 2,k), (kb —1,k), (ke k) k=1,...,n}

(k—1,k k),

with the convention that out of range terms are set to 0. Tedious but straightforward calculations
show that the sum of I; ; ;. of each relevant triplet is of order O p(n~?), by Lemma 3.2, completing
the proof.

We have
Tn5/2 n n n
E (Sn,15n,2Un) = 213 1/2 Z[i,j,lﬁ
1 %Vn i=1 j=2 k=3



(a6)

(a7)

where

[Pl 50 m 12 n\1/2 ol i |12 |2
i =B |08 =) (ramal sl =48 ) 00 ) g g (g™ e )|

The non zero contributions to E (S, 1.5y,,2U,) are from the triplets (i, j, k) in:

{(k =3,k —2,k),(k—2,k—2,k), (k— 1,k —2,k), (k,k — 2, k), (k — 2,k — 1,k),
(k_lak 17 )7( ak) (k 27k7k) (k_lakak:)a(kakyk)7
(k—2,k+1,k), (k— 1,k+1, k), (k,E+1,k),(k+1,k+1,k):k=1,...,n}

with the convention that out of range terms are set to 0. Tedious but straightforward calculations
show that the sum of I; ; . of each relevant triplet, using Lemma 3.2, is of order O p(n*3) yielding
the expected result.

We have

/ n n n

™
E(S2 k4k3Vn2 ZZZIJ’k’
i=1 j=2 k=3

where
. Iriza] |7l il ol i |3 e 2
o n \2/3 7 m \2/3, n .
Gk —k? (’U?_1)1/2 ()2 —k? (vgil) (U]") —k%’ (vi_s) / (vi_1) / (vp)*?

The non zero contribution to E (5%72Un) are from the triplets (4, j, k) in:

ﬂk—&k—&@&k—Z% 3, k), (k — ,k 2, k), (k— 2,k — 1K), (k — 2, k., k),
(k—2,k+1,k), (k- 2,k),(k—1,k—1,k), (k- 1,k k), (k— 1,k +1,k),
(hk—&@(kk—l@( hm(kk+1@(k+Lk—z@Jk+Lk—Lm,
(k+ 1,k k), (k+1LEk+1,k),(k+1Lk+2k),(k+2k+1,k) :k=1,... n},

once again, with the convention that out of range terms are set to 0. Tedious but straightforward
calculations show that the sum of I; ;; over each relevant triplet, using Lemma 3.2, is of order
Op(n=3), yielding the expected result.

_ P

= 3/222215 r2 — ol r —vj)(r,%—v,’;‘)].

nzljlkl

The only non zero contribution to £ (Sn 1) is when ¢ = j = k. Then we have
32 ;
FE (52,1) = —an ZE (’I"ZQ — v:‘)
Voo
n’? < 6 2 3
= ‘/BNZE<ri_3U L3 )rl—(v?)>
no =1

1372 n?/ Z(U

20



B (Spin2) = ooz 20D Ligk
1Vn' =1 j=1 k=2

Lij,=F [(rf — v?) (TJQ — v;‘) <|7’k,1] | — k2, /vﬁ_lv,’g)} )

The non zero contribution to F (5’721715”,2) are wheni=j=k;i=j5k=i+1i=kj=1—1
and i = k — 1,5 = k. In particular, we have

where

[ 2
Z Lk = ZE (7"12 — U?) (|ri_1\ ri| — k2, /v;‘_lvy)]
i=j=k i=2
n -
= ZE (7“;l — 27}?7“1»2) (]ri_1| 7| — k3, /vi"_lv?ﬂ
=2 )
n
I N 1/2
= Y B | (Ireal Il = koo Il = 207 Irical Inil® + 283 (1) 2 (01)*/27) |
i=2

= (kiks — kPka — 2kiks +263) Y (o) 2 (o),

7

i=2
n—1 )
Z Lijr = ZE [(Tf — vln) (\n] |riv1] — k%, /vl’?vﬁ_l)}
i=j,k=i+1 i=1
n—1
= 3B [(! - 20e) (il el = K2 o)
i=1
n—1
= (kaks — k2ky — 2kiks +2k3) 3 (of)2 (o8,0) 2,
i=1
Z Lk = ZE [(rf —o}) (r?_l — v y) <\ri_1] ri| — k2, /vfflvg‘)}
i=k,j=i—1 i=2
= ZE [(7”@'2—17“1'2 — vy} — o) <\7“1:—1! Irs| — ki, /v{ilvl.”)}
=2
= (K —2kiks + k) S (o) ()2,
i=2
and
n—1
Yo fgw = D E[(F - o) (i) (Il el = Ry fopen, )|
i=k—1,j=k i=1
n—1
= (K = 2kiks + k) S ()2 (o)
i=1

21



Thus

E(S:15n2) = (klks_k%l,ii_jflk?’”k%)nf‘” () 02+ 3 (o) (o)
=2 1=2
(29) o
E (Sn152,) k4V%/2l 2 12{21;]k,
where

Ligpe = B [(17 = o7) (IrjalIrsl = 18\ for o) (ireca bl = 8 oy )|

The non zero contribution to E (Sy,,157 ) are from the triplets (i, j, k) in:

{(k=2,k—1,k),(k—1,k—1,k),(k,k — 1,k), (k — 1,k, k), (k, k, k),
(k—1,k+1,k),(k,k+1,k),(k+1Lk+1,k):k=1,...,n}.

Some tedious but straightforward calculations yield:

2 (1 — kjks + ki)

n 2 n
FE (Sn,ISELQ) = k%v3/2 3/2 Z |: (Uifl) (’UZ- )i|
2 (k} — kiks + k1) 12 o 2 2 (o \L/2 0 m \1/2
T Y { () 004 6P ) ()]
1Vn
(kiks — kiks — ki + K1) 35 DV () (02 4 (o) () (o)1
+ 1Ay Z { 1) W)+ (0fg) T () () }
1Vn
ki — k2 — k3 ks + kyks) n 32 n \1/2 s fon NL/2 o \3/2
+< : 1k4V§’/2 3/22[ / ') (v41) 4 (v (vitq) / (v41) / } .
1Vn
(al0)
E( ’2 kbvi’)/? ;]Z“;IU ko
where

Lo = B [(trial il = 8\ for o) (gl gl = k8 foryor ) (Il el = 2y fog o) ]

The only non zero contribution to E (Sn 2) are from the triplets (i, j, k) in:

{(k—2,k— 1@4k Lk—2k),(k—1,k—1,k),(k—1,k k), (k—1,k+1,k),
(k.k— 1K), (k. k. k), (k. b+ 1, k), (k+ 1,k — 1K), (k + 1, k, k),
w+1k Lk),(k+1,k+2.k),(k+2k+1,k) :k=1,...,n}.
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Some tedious but straightforward calculations yield:

k2 — 3k? + 2Kk§ "
E(Sy2) = = k:6v13/2 1) > (o) )
1Vn i=2
2(k1k3_k%_2k%+2k n 1/2 ol 3/2 n n n \3/2/ ny1/2
k?V,f’/Q n®/? Z [ )Tl vl (0 g) T (v]) / }
2k$ — 2kt — kf + kqks)
_|_( 1 kzvg/; 1 3 n3/2 Z |:(,U"in_2) (U?_l)?)/Q (U?)I/Q + (U?_1)1/2 (U;L)?)/Q (Uzn_i_l)]
1Vn
6 (k9 — 2ki + k?) 1/2 o om \1/2
KV, n/? Z 1) @) (i)
(all)
(SnlU 5/2 szz]kl
n =1 j=1 k=1 [=3
where

Lijp=FE |:(rZQ _ v?) (sz _ v;‘) (?“;3 _ v}j) <‘r172’4/3 !7’171\4/3 \7“1\4/3 _ k% (Uﬁz)m (qu)m (Uzn)2/3ﬂ .

The non zero contribution to (SZ

(Z E(a > (Z E(a; + aj—1 + ai_g)ci7i_17i_2> + O(n4)] .

1Un) is given as follows

E (52,1(]”) = 3V5/2

Hence, we have

3 (ks — ko) (30, (7)) (ké@ - ki)

3 2
E(S3.U,) = T >3 (”?—2)2/3 (”?—1)2/3 CORE
i B 5/2 n n n n
k% Vel | x|+ 2i=3 (Ui—Z)z;z (%’—1)2?2 (] )z/z
+ 300 (vfe) ™ (viy) " (v]) /

+0(nh).
(a12) We can write

E (82 1Sn2Un)

= K} Ky K3, E (

2
Z az‘] [Z bz’,i—l] [Z Cz‘,z’—l,z’—2] )
= Ki,KonK3,E (Z Z Z Z aiajbk,klcl,l1,12>
i k1
= Klan2nK3n[ (ZZZG brk—1€11-1,1— 2) +2E (Zzzazagbkk 1C1,1-1,— 2)]

i<j k

K2 Kon K3, [(1) + (2)].
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By the independence and mean zero property of a;, a;, by x—1 and ¢;;—1 -2, the non zero contri-
bution to E (S’%vlSnygUn) are given by:

= (Z E(Cé?)) (Z El(biy1,i +bii—1 +bi—1,i—2 + bi—2,i—3)ci7i—1,i—2]> +O0p(n™),
and
(2) =2 (Z E(aibm‘—l + ai—lbi,i—1)> (Z E[(a, +a;—1+ ai_g)ci7i_17¢_g]> + Op(n74).

By tedious but simple algebra, we have

(V) = (e~ ko) (S0

%

Loy (12 = 103) (S0 1o )2 + S o)) +

%

SR ) () (0)
bk (b - "“’“é)(+2( D)) ) )}

@) =2 {halhs = k) (S + D20 ) |

(2

X {k%(k% — kaks)

x (2@?)5/3@?_1)2/3@_ P 4 P+ S ”_1>2/3<v?_2>5/3)}

+0(n™%).

Thus

T TLS

E(ng,lsn,QUn) = K12nK2nK3n[(1) + (2)] = kaﬁW{(l) + (2)]

(a13) We have
TL 1Sn 2U

- KanQnK?m

2
( Zaz sz’,i—ll [Zsz1z2])
= KangnK3n (Zzzzbzz 1b]j 10kCL1—1,1— 2)
E

- KanQnKSn
1<J

(ZZZb“ VARGl 1 2>+2E (ZZZb” 1bjj1akCL 1 2)]

K1n K3, K3n [(3) + (4)].
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By the independence and mean zero property of a;, a;, by x—1 and ¢;;—1 -2, the non zero contri-
bution to E(Sn,lS%’QUn) are given by:

® = (SB0 ) (SEle+ o+ o) + 0

and

(4) = 2x <Z E[bi,ilbi+1,i]> <Z El(a; +a;—1 + aiQ)Ci,il,i2]>
+2 X (Z Elb;;—1a; + bi,il%‘l]) X

X <ZE bii—

4 [bii—1(Ci—1,i—2i—3 + Cii—1,i—2 + Cit14i—1 + Ci+2,i+1,i)]> +O0(n™%)
(A

By tedious but simple algebra, we have

(8) = (K¥—ki)k (k:%o - k2k4) Zv%y )

7

> <Z(U?)5/3(vn )2/3 a 2/3+Z 2/3 n 5/3 2 2/3+Z 2/3 a 2/3( n2)5/3)

(4)= 2x (k%(/@ — k%) Z(vgﬂ)l/zv;l(vg_l)l/z) X {ké(k%o — kaks)

x(;w?wg(v?l)?/?’(v>2/3+z< )P S >2/3<v?2>5/3)}

7 A

1o x {mkg k) (zw)w(v NSy CeTe ”_1>3/2) }
X {/‘Cg(k% — kik3) <Z(U?)7/G(U?1)7/6(71?2)2/3 + Z(”?H)Q/B(Uinym(”zn1)7/6>

1

S ()20 )0 )2 )2
i k3 (k7 — kyka o . i
L A o i e O LI

It follows that

B(S0152a01) = Kunk, Ko [(3)+ (4)] = 1 Z5(9) + (1)
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(al4) We have

K2nK3n

Zb” ] Zc” Lie QD

7

? J

K3, KsnE (Zzzzbzz 1bjj-1bg k—1¢11-11-2
K3, K3 E(Zzb” 1C11—1,1— 2>+3E Zzb” 10j5-1€11-1,1-2

A l 1<j

+3E Zzbi,i—1b?,j_1cz,l—1,l—2 +6F Z Zbi,z’—1bj,j—1bk,k—lcl,l—1,l—2
i<j 1 i<j<k 1

= K3,K3,[(5)+ (6) + (7) + (8)].

It is straightforward to see that

(5) = Z E (b?7i_1[ci+2,i+1,i + Cit1,ii—1+ Cii—1i—2 + Cifl,ifQ,ifB]) =0(n™"),
(8) = OZ(n_4),
and
(6) +(7)

(Z E®;; > <Z Ebi;—1(Ciq2,i41,i + Civ16i—1 + Cii—1,i—2 + Cil,iQ,iB)]) +0(n™%).

%

The expansions lead to:

6+ (1) =3x { (5~ K Sl |

Ly (k2 = 002) (SONT01 )T + SR
3 ' i

7

P O RE I LGNSR N
2 +§<v?+2>2/3<v?+1>2/3<v?>7/6<vy_1>1/2

+0(n™*)
Hence
B (53,00) = - - 1(6) + (7)].
: klk% Vo2
Proof of Lemma

(al) Follows directly given the definition of S,, and V/,.

26



(a2) Follows given parts (a2) and (a3) of Lemma

(a3) Note that
E (S3) = E(S31) = 3E (S515n,2) +3E (Sn1572) — E (S5 2)

The result follows by using parts (a7)-(al0) of Lemma and (S2.8).
(ad4) Write
E (S3U,) = E (83 ,Un) —3E (S; 15n2Un) + 3E (Sn155 5Un) — E (S5
Then, the result follows by using parts (all)-(al4) of Lemma and (S2.8).

(ab) This follows given parts (a4)-(a6) of Lemma and (S2.8).

Proof of Lemma Proofs for (al)-(a5) follow the same lines as in those of Lemma The
derivation are the same and we use Lemma 3.2 instead of to obtain the relevant probability
limits. It remains to prove (a6). Since V,* = Op(1) with positive probability limit, we just have to
show that conditionally on o, a, = /n (E*(f/,;‘ ) -V ) = Op(1). For this it suffices to show that
Ela,| = O(1) conditionally on o. Using Lemma we can see that for k, large enough, we can see
obtain:

WU,) -

= (k)32 ke 3/2n/kn sn\A/3 (s \2/3 | . 3/2 ke 2/3 (s \4/3
an = (k7 )n ‘21 (Uj) +T7|n Zl (”j) (%‘-1) +n ‘21 (Uj> (%‘-1)
j= j= J=
n/kn n/k'n
+2(2 — k) <n3/2 I CARSCARYEE DY (6?)3/2(@?—1)1/2>
j=1 j=1
A n/kn
—(kt = 1)n?/? 21( 7(051),
j=
where ﬁ?’s involve returns in non overlapping blocks j = 1,...,n/k,. Hence, to conclude, it is sufficient

to show that, conditionally on o,

n/kn n/kn

E[n®23 (1) | =0(1) and E[n*2> (0107 ,)" | =0(1),
j=1 j=1

for a,b > 0 and a+b = 2. By definition, 0% = 1 ZZ 1 H 1)k and thanks to the Jensen’s inequality,

we have: E(0])* < ﬁ Zf E(|ris—1 kn|2 ) for all @ > 1. Using Eq. (2.1.34) of Jacod and Protter

(2012), we can claim that, for all p > 1, E (Jr;|P) < 7572 Thus, for some constant Ko,

Koy

E(07)" < a

for all a>1. (52.10)

Also, if 0 < a < 1, the Jensen’s inequality implies that E[(0})?] < [F (@;L)]“ which, in turn and using

, is less or equal to %, for some constant Ks. This means that (S2.10|) actually holds for all
a > 0.

Since, conditionally on o, r;’s are pairwise independent with r; ~ N(0,v}), 97’s are also pairwise
independent conditionally on ¢. Hence, conditionally on o,

n/kn n/kn

B (a2 3 (emeen,)? | =n¥2 3 Blany )] < o2t L L _ oY _ o),

k., n® nb ky,
for some constant C' > 0.
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Appendix S3: Bootstrap test statistic for the log version of the jump
test

The asymptotic test based on logarithm transformation of the linear version of the jump test as given
by (6) has been proposed by Huang and Tauchen (2005). It follows from (4) and (5) that

S I
V1 (log RV,, — log BV,)) 4 N (O,TI‘%> or=6-2

and the test statistic of the log version of the jump test is given by

v (log RV,, —log BV},)

Tlog,n = —
\/7' max (1, %}5)

To derive the bootstrap test statistic Tf’ggn for Tiogn, we rely on the following result which is
established as part of the proof of Theorem 3.1:

«—1/2 RV¥ — E*(RV)) \ a

By a Taylor expansion, we have

RV E*RVY)\ 1 1 RV,y — E*(RV,))
Vi (log 5t —log 52(5143) = ( womm e >ﬁ< BV — E*(BVy)
+op+(1), Prob-P.
Conditionally on no jumps, E*(RV,) B IV and E* (BVY) B IV. From |D we conclude that
RV E*(RV}
Vvn (log BV~ log ﬁ

1Q
Ve

The bootstrap test statistic for T,y is given by

) 95 N(0,1), in Prob-P.

*

RV E*(RVy:
NZD (log BV log W‘/}D

T’log,n - .
\/T max <1, (3185)2>

Tiog,n satisfies the conditions of Theorem 3.2 and if Condition A holds, this theorem applies and we
can claim that leg,n controls the strong asymptotic size and is alternative consistent.

Appendix S4: Bootstrap consistency for two alternative jump test
statistics

The purpose of this section is to show that the local Gaussian bootstrap can be applied more generally
than just to the BN-S test statistic. Specifically, we consider the jump test of Podolskij and Ziggel
(hereafter PZ, 2010) and the jump test of Lee and Hannig (hereafter LH, 2010), which extends that
of Lee and Mykland (2008). We first introduce the test statistics and their bootstrap versions. We
then give a set of high level conditions on 9]' under which the bootstrap is asymptotically valid when
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applied to each of these tests. The main result is Proposition S2.1, whose proof appears at the end of
this section.
The PZ (2010) test statistic for jumps over [0, 1] is given by

1 n n
ntT (; |ri|P — 2§¢\Ti’p1{|ri|gcn—W})
Tn(p) = = — : (S4.1)

N 3
<np‘1Va7‘(€i) > !Til2p1{|n-|3cnw}>
=1

where p > 2, & are positive i.i.d random variables, independent of X with E(&;) = 1, Var(&;) > 0 and,
for some a > 0, E(&21*) < 00; ¢ > 0 and @ € (0,1/2). PZ establish that for any p > 2, conditionally
on g, i.e. when there are no jumps over (0, 1],

Tu(p) =% N(0,1) (84.2)
and, conditionally on €1, i.e. under the occurrence of jumps over (0, 1],
P
T,(p) — oo. (54.3)

LH’s (2010) test statistic for jumps at a given date 7 is given by

T (r) = Y (S4.4)

&(ti)’
where ¢ is such that 7 € (t;_1,t;] (t; = i/n) and
.
6 (t:)]° = T Z 7”32'1{|ri|§cnfw}7
" j:i_];'n

for some ¢ > 0 and @ € (0,1/2); and k, an arbitrary sequence of integers such that k, — oo and
kn /n — 0 as n — oo. This test statistic is used to test whether there is a jump at a particular time
7 € (0,1]. Let
Q) ={w:s— Xs(w) : is continuous at s = 7}

and
O ={w:s— X(w) : is discontinuous at s = 7}.

Conditionally on €2,
T,(r) % N(0.1), (34.5)
and conditionally on 7 (see Theorem 1 of LH),

T, (7) 5 . (S4.6)

This test can also be used to detect the occurrence of big jumps over the whole interval (0, 1] by using
critical value from the extreme value distribution y, the asymptotic distribution of

maxi<i<n | Tn(ti)| — Cn

T, = , S4.7
: (547
with C), = (210g”)1/2 - W, Sp = W and Vr e R, P(u<z)=exp(—e™™).

We refer to LH (2010, p. 275) for the full description of the testing procedure for big jumps detection.
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To define the bootstrap test statistics, let the local Gaussian bootstrap sample be {r} : i =

.,n}, with
i =0 i,
where 7; is i.i.d N(0, 1) independent of the data and 7 is a local volatility estimator. We define the
bootstrap version of PZ’s test statistic T, (p) in - by

np% Z ’,,,;:k’p - Z CZ’r;,k ’pl r¥l<en—®
. = = {IrjIen==}
T, (p) = -, (S4.8)

" 3
<nP1Va7’(Ci) > 7’?’2p1{|r%<cn’”})
i=1 £

where (; is an i.i.d sequence of positive random variables which is independent of the data, &; and 7;,
and has the same distribution as &;.
The bootstrap version of LH’s test statistic T),(7) in - for jump at date 7 € (t;—1,¢;] is

73(r) = ﬂt) - Yo, ($1.9)

where [6* (£;)]? is the bootstrap analog of [4 (£;)]?, obtained by replacing r,,, by *, in [7 (¢;)]* . More
precisely,

i—1
Ak 2 n %2
[U (tz)] - ];7 Z Ty 1{\r;|§cnfw}‘
n . =
Jj=i—kn

We establish the bootstrap validity for the PZ and LH tests under the following Conditions A (PZ-
p) and A(LH-7), respectively. These conditions are the analogue to Condition A in the main text
under which the validity of the local Gaussian bootstrap is established for the BN-S jump test.

Condition A(PZ-p)

(i) There exists 6 > p such that,

lfi —H—fn AnZP/l 20
w<5 o5 and V/e (0,9], n Z(UZ) = ; o du.

(ii)
_1+2p2 2p _ OP )

Condition A(LH-7)
(i) Asn — 00, k, — 00 and ky/n — 0.
. . 2
(if) For j=i—kn,...,i—1, nd} TN 02 asn — oo and - Z; 1 - <m§§z) = O, (1), where i is such
that 7 € (ti—lati]'

Similarly to Condition A, these conditions apply to the sequence of local volatility estimates and
so long as these conditions are satisfied both under the null and the alternative, the bootstrap test
controls size under the null and is consistent under the alternative. The main result is as follows.

Proposition S4.1 Let X be an Ité semimartingale defined by (1) and satisfying Assumption (H-2).
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(i) If Condition A(PZ-p) holds for some p > 2, then

T:i(p) & N(0,1),

in probability.
(i) If Condition A(LH-t) holds for some T € (0,1], then
T:(r) S N (0,1),
in probability.
Before providing the proof of this proposition, we make the following remarks.

Remark 1 The bootstrap version T, (1) of LH’s test statistic can be used to detect the occurrence of
big jumps over a fized time interval such as [0,1]. A sufficient condition is that Condition A(LH-T)
holds for all 7 € (0,1]. Under this condition and because the n;’s are independent conditionally on the
data, the T) (t;) are also conditionally independent and asymptotically standard normal over the entire
interval. In this case, the bootstrap can be used to compute the critical values of LH’s (2010) big jump
test. In particular, we reject the absence of jumps at any given time t; whenever the absolute value of
T, (ti) exceeds ¢Sy, + Cy, where q}, is the a quantile of the bootstrap distribution of

o+ WaXigi<n T (t:)| — Cn

(S4.10)

Note that the test statistic Ty, can be used directly to test for occurrence of jumps over long time
intervals. This has been highlighted by Ait-Sahalia and Jacod (2014, Chap. 10). In this case, critical
values from the extreme value distribution pv or from the bootstrap distribution of T, can be used.

Remark 2 A bootstrap version of the QQ-plot test for small jumps can also be obtained by com-
paring the empirical quantiles of {Ty,(t;) : i = kn,...,n} to those of the bootstrap samples {T*(t;) :
= l%n, ...,n}. The bootstrap samples replace the artificial samples drawn from the standard normal
distribution originally proposed by Lee and Hannig (2010).

Remark 3 If we implement the bootstrap jump tests of PZ and LH with 0} based on thresholding (as
discussed in Section 3.2 for the BN-S test), the truncation parameter, say @', used for the bootstrap
data generating process need not be equal to w - the truncation parameter used in the test statistics. In
particular, to satisfy Condition A(PZ-p), one can first choose w € (0,1/2) and then, set @' such that

max (1212:11” 255:1T) <w < % for some § > max (p, ﬁ) We can show that under these conditions,

Condition A(PZ-p) holds by Theorem 9.4.1 of Jacod and Protter (2012). While these restrictions on
w and w' matter for Condition A(PZ-p) to be satisfied under the alternative of occurrence of jumps,
they are immaterial under the null of no jumps since this condition is fulfilled for any choice w and
@’ in (0,1/2). Given Theorem 9.3.2 of Jacod and Protter (2012) and their comments leading to that
theorem, we can claim that Condition A(LH-7) is also fulfilled for a local volatility estimate based on
thresholding so long as we maintain that the volatility process o2 is continuous at s = 7. The validity

of the test over the full range [0, 1] is therefore guaranteed under the common assumption that the price
and volatility processes do not jump at the same time.

Remark 4 We have implemented the bootstrap versions of the PZ (2010) and LH (2010) tests in
unreported simulation results using the same data generating processes as in the main text. Our findings
are as follows: (1) the PZ (2010) is slightly oversized under the null of no jumps and the local Gaussian

31



bootstrap helps alleviate these finite size distortions without sacrificing power; (2) the bootstrap big-
Jgump LH (2010) test outperforms the original test of LH (2010) by showing a lower probability of global
misclassification. Specifically, the bootstrap version of the test has a lower probability of global spurious
detection of jumps than the original test while both tests have the same probability of global failure to
detect jumps. (3) the small-jump LH test also has a low probability of global spurious detection of
Jjumps that ranges between between 3.65% for n =78 and 3.47% for n = 576, although not as low as
that of the bootstrap big-jump LH (2010). Its probability of global success in detecting actual jumps is
much smaller than both versions of the big-jump LH test when the alternative is finite activity jumps
but it dominates any of these two tests when there are infinite activity jumps. This is as expected
since the small-jump test of LH (2010) is especially designed to detect small jumps; (4) The big-jump
test over long time intervals using directly (Ait-Sahalia and Jacod (2014, Chap. 10)) has a
large size distortion under the null of no jumps that decays slowly from 63.14% (n = 78) to 58.09%
(n = 576). Interestingly, the bootstrap version of this test, with rejection rates under the null from
3.14% to 5.56%, corrects this size distortion while showing reasonable power.

Proof of Proposition (i) Let
n n n
a, = 'z (Z il = Z Ci|r’>;|p1{r;*|§cnw}) , dy =0t War(G) Z ‘ﬁ’zpl{w;ﬂgcmw}?
i=1 i=1 i=1
so that T (p) = a}/\/d%. Let
n n
afy =0T D IPA =G, b =0T D GNPl -
i=1 =1

Clearly, o = af, + a3,,. We will show that (a) a3, = op«(1), in probability, and that d is positive
with probability approaching one so that T)'(p) = af,/\/d} + op-(1). Let v, = Var*(aj,) and

Sy = aj,/\/vn. We complete the proof of statement (i) by showing that: (b) S 4 N(0,1), in

probability and (c) d}, — vy, N 0, in probability.
(a) We have

i

clp—=l’

n n
p—1 p—1
a5l < 0T Y IGHT LY conomy S 0T D GIVEP
=1 =1

for all I > 0. Hence, using the fact that 7 = /0" - n;, 17; ~ N(0,1), we have that

n n

— ! ! 1

E*al,| < C-n'7 Z(@y)% N L B Z(@y)%7
i=1 =1

where C' > 0 is a generic constant. Choosing [ close enough to § so that w < % — % ensures, using
Condition A(PZ-p)-(i) that a3, = op«(1) in probability. The positivity of d is proven in part (c)
below.

(b) Simple calculations show that v, = ug,Var(¢)n P> (62)P  which, under Condition
A(PZ-p)-(i) converges in probability to the almost surely positive random variable pg,Var(¢;) fol o2 du.
We can therefore focus on establishing the conditions that ensure that aj, is asymptotically normal.
Note that

n n
* e =l a\B
A, =Y 0T PO G) =D 0T ()P (1 - G).
i=1 i=1
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By the independence across i of the terms in this summation and the fact that E*(|n;|P(1 — ()) =0,
it suffices to verify the Lyapunov condition to conclude (b). That is, we show that there exists v > 0
such that

n « p=1 24+v
ZE n oz |[rfP(1—¢) =op+(1),
i=1
in probability. It is not hard to see that
" -1 24+v n
SB[ (- ) = 0/ D S el
i=1 —

Again, one can choose v > 0 so that p < p(1 4+ v/2) < § and use Condition A(PZ-p)-(i) to conclude.
(c) Note that

di = nPWar(Q) Z\r 122 — P War () Z 7 |2p1 (Ir[>en—=) = =dy, +ds,.
=1
It is not hard to prove by following similar steps as those in (a) above that d5, = op«(1) in probability.

Hence, it suffices to show that dj,, — vy, 5o, in probability. Note that E£*(d},) = v, and it suffices to
show that Var*(d;,) = op(1) to conclude (d). We have:

Var*(di,) = Var () [Var(G)Pn ™! ‘“2”2 (1),

thanks to Condition A(PZ-p)-(ii). The positivity of d; also follows.

(ii) Since m; ~ N(0,1) and is independent of the data, it suffices to show that Y r(w) B lin

probability and, under Condition A(LH-7), it suffices to show that [6* (¢;)]? L o2, in probability. For
this, we show that

E%ﬁﬂmf—a)%OMMVM(bWMF—J)%O
The following inequality (proven by successive applications of the Holder inequality with Holder

conjugates ¢/p > 1 and ¢q/(q — p)) and the Markov inequality (with exponent 2¢) implies that for any
q>p>0,

E* (|\/ﬁr;f|2p1 (I Sm,w}) < K (no?)? =2 p)/27=) (S4.11)

where K is a positive constant. To show that E* ([6* (t:)] ) = 02, it suffices to show that

i—1
n 2 P
E* = 'I’j‘< 1 _ —
P2 7 Yiglza=y | 70,
j=i—kn
since
n i—1 1 i—1
2 N P
E* | — i == E (nv?)—)oz.
kn, . ky, ‘
j:i_kn ]:Z_kn
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Note that

i—1 i—1

* n *2 1 * %\ 2
Elo 2 i ey | = 5 2 F (V51 g en =)
Jj=i—kn Jj=i—kn
i—1
< k| (no7)? | p=2a-01/2-=)
B kn !
Jj=i—kn =o(1)

where the above inequality follows given (S4.11|) with ¢ > p = 1. Next, we show that Var* ([&* (tl)]z) L
0. It is not hard to obtain that

Var® <[5* (tz‘)]Q) = ];1%12_: (no7)” - Var* (77]2'1{|r;\§cn—w})

Jj=i—kn
1 i—1 ) 1 1 i—1 )
<z 2 ) E ) <K = | = 3 (ni))
n . . 7 n mn . . 7
j=t—kn ~— j=i—kn
=o(1)
=0p(1)

The desired result follows from Condition A(LH-7).
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