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Abstract

The main contribution of this paper is to propose a bootstrap test for jumps based on functions
of realized volatility and bipower variation. Bootstrap intraday returns are randomly generated
from a mean zero Gaussian distribution with a variance given by a local measure of integrated
volatility (which we denote by {07'}). We first discuss a set of high level conditions on {67} such
that any bootstrap test of this form has the correct asymptotic size and is alternative-consistent. We
then provide a set of primitive conditions that justify the choice of a thresholding-based estimator
for {97}. Our cumulants expansions show that the bootstrap is unable to mimic the higher-order
bias of the test statistic. We propose a modification of the original bootstrap test which contains an
appropriate bias correction term and for which second-order asymptotic refinements are obtained.

1 Introduction

A well accepted fact in financial economics is that asset prices do not always evolve continuously over a
given time interval, being instead subject to the possible occurrence of jumps (or discontinuous move-
ments in prices). The detection of such jumps is crucial for asset pricing and risk management because
their presence has important consequences for the performance of asset pricing models and hedging
strategies, often introducing parameters that are hard to estimate (see e.g. Bakshi et al. (1997),
Bates (1996), and Johannes (2004)). In addition, jumps contain useful market information and can
be used to improve asset pricing models once detected. For instance, jumps are often associated with
macro announcements (as documented by many studies, including Barndorff-Nielsen and Shephard
(2006), Andersen et al. (2007), Lee and Mykland (2008) and Lee (2012)). As shown by Savor and
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Wilson (2014), it is easier to reconcile the behavior of asset prices with the standard CAPM model
on those dates. Similarly, Li et al. (2017a) show that jumps in asset prices are often associated with
aggregrate market jumps, suggesting that a standard linear one-factor model is appropriate to model
jump regressions.

Given the importance of jumps, many jump tests have been proposed in the literature over the
years, most of the recent ones exploiting the rich information contained in high frequency data. These
include tests based on bipower variation measures (such as in Barndorff-Nielsen and Shephard (2004,
2006), henceforth BN-S (2004, 2006), Huang and Tauchen (2005), Andersen et al. (2007), Jiang and
Oomen (2008), and more recently Mykland et al. (2012)); tests based on power variation measures
sampled at different frequencies (such as in Aft-Sahalia and Jacod (2009), Ait-Sahalia et al. (2012)),
and tests based on the maximum of a standardized version of intraday returns (such as in Lee and
Mykland (2008, 2012) and Lee and Hannig (2010)). In addition, tests based on thresholding or
truncation-based estimators of volatility have also been proposed, as in Ait-Sahalia and Jacod (2009),
Podolskij and Ziggel (2010) and Cont and Mancini (2011), based on Mancini (2001). See Ait-Sahalia
and Jacod (2012, 2014) for a review of the literature on the econometrics of high frequency-based
jump tests.

In this paper, we focus on the class of tests based on bipower variation originally proposed by BN-
S (2004, 2006). Our main contribution is to propose a bootstrap implementation of these tests with
better finite sample properties than the original tests based on the asymptotic normal distribution.
Specifically, we generate the bootstrap observations under the null of no jumps, by drawing them
randomly from a mean zero Gaussian distribution with a variance given by a local measure of integrated
volatility (which we denote by {0'}).

Our first contribution is to give a set of high level conditions on {9]'} such that any bootstrap
method of this form has the correct asymptotic size and is alternative-consistent. We then verify these
conditions for a specific example of {9]'} based on a threshold-based volatility estimator constructed
from blocks of intraday returns which are appropriately truncated to remove the effect of the jumps. In
particular, we provide primitive assumptions on the continuous price process such that the bootstrap
jump test based on the thresholding local volatility estimator is able to replicate the null distribution
of the BN-S test under both the null and the alternative of jumps. Our assumptions are very general,
allowing for leverage effects and general activity jumps both in prices and volatility. We show that
although truncation is not needed for the bootstrap jump test to control the asymptotic size under
the null of no jumps, it is important to ensure that the bootstrap jump test is consistent under the
alternative of jumps. Other choices of {0]'} could be considered provided they are robust to jumps. For
instance, we could rely on multipower variation volatility measures and use our high level conditions to
show the first-order validity of this bootstrap method. For brevity, we focus on the thresholding-based
volatility estimator, which is one of the most popular methods of obtaining jump robust test statistics.

The second contribution of this paper is to prove that an appropriate version of the bootstrap
jump test based on thresholding provides a second-order asymptotic refinement under the null of no
jumpsﬂ To do so, we impose more restrictive assumptions on the data generating process that assume
away the presence of drift and leverage effects. For this simplified model, we develop second-order
asymptotic expansions of the first three cumulants of the BN-S test and of its bootstrap version. Our
results show that the first-order cumulant of the BN-S test depends on the bias of bipower variation
under the null of no jumps. Even though this bias does not impact the validity of the test to first-order
because bipower variation is a consistent estimator of integrated volatility under the null, it has an
impact on the first-order cumulant of the statistic at the second-order (i.e. at the order O (n_l/ 2))
Our bootstrap test statistic is unable to capture this higher-order bias and therefore does not provide

1Second-order refinements are important because bootstrap tests with this property are expected to have null rejection
rates that converge faster to the desired nominal level than those of the corresponding asymptotic theory-based test,
hence ensuring smaller finite sample size distortions.



a second-order refinement. We propose a modification of the bootstrap statistic that is able to do so.
Our simulations show that although both bootstrap versions of the test outperform the asymptotic
test, the modified bootstrap test statistic has lower size distortions than the original bootstrap statistic.
In the empirical application, where we apply the bootstrap jump tests to 5-minutes returns on the
SPY index over the period June 15, 2004 through June 13, 2014, this version of the bootstrap test
detects about half of the number of jump days detected by the asymptotic theory-based tests.

Although we focus on the BN-S test statistic, the local Gaussian bootstrap can be applied more
generally to other jump tests. In particular, we provide a set of conditions under which it can be
applied to the jump tests of Podolskij and Ziggel (2010) and Lee and Hannig (2010).

The rest of the paper is organized as follows. In Section 2, we provide the framework and state
our assumptions. Section 3.1 contains a set of high level conditions on {0} such that any bootstrap
method is asymptotically valid when testing for jumps using the BN-S test. Section 3.2 provides a
set of primitive assumptions under which the bootstrap based on a thresholding estimator verifies
these high level conditions. Section 4.1 contains the second-order expansions of the cumulants of the
original statistic whereas Section 4.2 contains their bootstrap versions. Section 5 gives the Monte
Carlo simulations while Section 6 provides an empirical application. Section 7 concludes. Appendix A
contains a law of large numbers for smooth functions of consecutive local truncated volatility estimates.
In addition, an online supplementary appendix contains the proofs of all the results in the main text.
Specifically, Appendix S1 contains the proofs of the results presented in Section 3 whereas Appendix
S2 contains the proofs of the results in Section 4. Appendix S3 contains formulas for the log version
of our tests. Finally, Appendix S4 contains the bootstrap theory for the jump tests of Podolskij and
Ziggel (2010) and Lee and Hannig (2010).

To end this section, a word on notation. We let P* describe the probability of bootstrap random
variables, conditional on the observed data. Similarly, we write E* and Var* to denote the expected
value and the variance with respect to P*, respectively. For any bootstrap statistic Z = Z (-,w)
and any (measurable) set A, we write P* (Z} € A) = P*(Z} (-,w) € A) =Pr(Z} (-,w) € A|X,), where
w € 2, a sample space and &), denotes the observed sample. We say that Z —P" 0 in prob-P (or
Z* = op« (1) in prob-P) if for any €, > 0, P (P* (|Z}| > ¢) > ) — 0 as n — oo. Similarly, we say that
Z* = Op~ (1) in prob-P if for any § > 0, there exists 0 < M < oo such that P (P* (|Z}| > M) > §) = 0
as n — oo. For a sequence of random variables (or vectors) Z¥, we also need the definition of
convergence in distribution in prob-P. In particular, we write Z¥ — Z, in prob-P (a.s.-P), if
E*(f(Z})) — E(f(Z)) in prob-P for every bounded and continuous function f (a.s.—P).

2 Assumptions and statistics of interest

We assume that the log-price process X; is an [td6 semimartingale defined on a probability space
(Q, F, P) equipped with a filtration (F;),~, such that

Xi=Yi+Ji, t >0, (1)

where Y; is a continuous Brownian semimartingale process and J; is a jump process. Specifically, Y;
is defined by the equation

¢ ¢
Y, =Y, —l—/ asds —l—/ osdWs, t >0, (2)
0 0

where a and o are two real-valued random processes and W is a standard Brownian motion. The
jump process is defined as

t t
Jp = /0 /R (5 (s,x) 1{|5(s,a:)|§1}) (n—v) (ds,dz) + /0 /R (5 (s,x) 1{|5(S7$)|>1}) w(ds,dz), (3)



where p is a Poisson random measure on Ry x R with intensity measure v (ds,dx) = ds® A (dx), with
A a o-finite measure on R, and § a predictable function on  x Ry x R.
We make the following assumptions on a, o and J;, where r € [0,2].

Assumption H-r The process a is locally bounded, o is cadlag, and there exists a sequence of
stopping times (7,,) and a sequence of deterministic nonnegative functions =, on R such that
S ()" A(dz) < oo and |6 (w, s,z)| A1 < v, (2) for all (w,s,z) satisfying s < 7, (w).

Assumption H-r is rather standard in this literature, implying that the 7" absolute power value
of the jumps size is summable over any finite time interval. Since H-r for some r implies that H-r’
holds for all 7’ > r, the weakest form of this assumption occurs for r = 2 (and essentially corresponds
to the class of It6 semimartingales). As r decreases towards 0, fewer jumps of bigger size are allowed.
In the limit, when r = 0, we get the case of finite activity jumps.

The quadratic variation process of X is given by [X], = IV, + JV;, where IV; = fg agds is the
quadratic variation of Yz, also known as the integrated volatility, and JV; = > _, (AJS)2 is the jump
quadratic variation, with AJ, = J, — J,_ denoting the jumps in X. Without loss of generality, we let
t = 1 and we omit the index ¢. For instance, we write IV = IV; and JV = JV;.

We assume that prices are observed within the fixed time interval [0,1] (which we think of as a
day) and that the log-prices X; are recorded at regular time points ¢t; = i/n, for i = 0,...,n, from
which we compute n intraday returns r; = X;/,, — X(;_1)/n at frequency 1/n; we omit the index n in
r; to simplify the notation.

Our focus is on testing for “no jumps” using the bootstrap. Specifically, following Ait-Sahalia and
Jacod (2009), let Q¢ = {w : t — X (w) is continuous on [0,1]} and
Q) = {w:t+— X; (w) is discontinuous on [0, 1]}, with @ = Qo U Q; and Qp N 2 = @. Our null
hypothesis is defined as Hy : w € 2y and the alternative hypothesis is Hy : w € €.

Let RV,, = >_"" | r? denote the realized volatility and let

i=1"1%

1 n
BV, = 72 |71 |74
1 =2

be the bipower variation, where we let k1 = E (|Z|) = v/2/\/7 be a special case of k, = E|Z|?, for
g >0, with Z ~ N (0,1).
The test statistic whose distribution we bootstrap is defined as

Vi

where

n
Vo=7-1Q, with 1Q,= " 3" |ri¥* [risy |3 ria|*?,
(kas3)” i=
with 7 = 6 — 2 and 6 ~ 2.6090. The test rejects the null of “no jumps” at significance level a whenever
T > z1—q, where z1_, is the 100 (1 — a)) % percentile of the N (0, 1) distribution. This is justified by
the fact that T, = N (0,1), in restriction to £y, where 5 denotes stable convergence (see BN-S
(2006) and Barndorff-Nielsen et al. (2006)). In particular, we can show that the test has asymptotically
correct strong size, i.e. the critical region C,, = {T}, > z1_,} is such that for any measurable set .S C g
such that P(S) > 0,limy, oo P (w € C,|S) = a. Under the alternative hypothesis, we can show that
the test T,, is alternative-consistent, i.e. lim, ., P (Ql N @n) = 0, where C, is the complement of C,,.
Since the above condition implies that P (C,[Q1) — 0, as n — oo, we have that P (Cpn|Q1) — 1 as
n — 0o, which we can interpret as saying that the test has asymptotic power equal to 1.



3 The bootstrap

We impose the null hypothesis of no jumps when generating the bootstrap intraday returnsﬂ Specifi-

cally, we let
:\/{)7177“ 221,,71, (5)

for some volatility measure 0" based on {r; : i =1,...,n}, and where 7; is generated independently
of the data as an i.i.d. N (0, 1) random variable. For snnph(nty, we write r} instead of r}, . According
to . bootstrap intraday returns are conditionally (on the original sample) Gau551an with mean
zero and volatility 0, and therefore do not contain jumps. This bootstrap DGP is motivated by the
simplified model X; = f(f osdWs, where o is independent of W and there is no drift nor jumps, but
its consistency extends to more general models with leverage and drift, as our results in this section
show P
The bootstrap analogues of RV,, and BV,, are

RV} = ZT*Q and BV, = k22|’rz 1}|r|
=1

The first class of bootstrap statistics we consider is described as

v _ VRV — BV — B* (RV; — BV;))

" n n - n n , (6)
Vi
where n n
B* RV, = BV;) = Yo = (o) 7 (61)'”,
i=1 i=2
and
Vi=r.1Q, with IQ, = Y3 a2 el

(k’4/3) i=3
Thus, T} is exactly as T, except for the recentering of RV, — BV, around the bootstrap expectation
E* (RV; — BV;¥). This ensures that the bootstrap distribution of 7} is centered at zero, as is the case
for T}, under the null of no jumps when n is large.
As we will study in Section 4, it turns out that 7T, has a higher-order bias under the null which
is not well mimicked by 7);, implying that this test does not yield asymptotic refinements. For this
reason, we consider a second class of bootstrap statistics based on

T Vn (RV,f — BV, — E* (RV, — BV)Y)) n 1y/n (07 + o))

n ~ 5 ~ ’ (7)
Vi A%
where the second term accounts for the higher-order bias in 7;,. This correction has an impact in finite

samples, as our simulation results show. In particular, T has lower size distortions than 7 under
the null, especially for the smaller sample sizes.

Next, we provide general conditions on ¢} under which T} SN (0,1), in prob-P independently
of whether w € 0y or w € €. The consistency of the bootstrap then follows by verifying these high
level conditions for a particular choice of 9;'. We verify them for a thresholding-based estimator, but
other choices of 9]' could be considered. Asymptotic refinements of the bootstrap based on T will be
discussed in Section 4.

>This follows the recommendations of Davidson and Mackinnon (1999), who show that imposing the null in the
bootstrap samples is important to minimize the probability of a type I error.

3However, for the second-order asymptotic refinements of the bootstrap in Section 4 we do require the absence of
leverage and drift effects.



3.1 Bootstrap validity under general conditions on v

The first-order asymptotic validity of the local Gaussian bootstrap can be established under Condition
A below. Note that this is a high level condition that does not depend on specifying whether we are
on )y or on €.

Condition A Suppose that {0]'} satisfies the following conditions:

(i) For any K € N and any sequence {qx € R4 : k = 1,..., K} of nonnegative numbers such that
0<qg=Y1 qx <8 asn — oo,

ntal? Z H 0 ft1) qk/2 —>/ oudu > 0.

=K k=1

7
denotes the largest integer smaller or equal to x.

2
(ii) There exists a € [0,2) such that nz[n/ Lnt1)] (1) (Ln+1)> = op (1), where L, x n® and [z]

Theorem 3.1 Under Condition A, if n — oo, T LN (0,1), in prob-P.

Condition A(i) requires the multipower variations of ' to converge to | ! oddu for any ¢
8. Under this condition, the probability limit of ¥} = Var* (\/H(RV; , BV )) is equal to X
Var (\/ﬁ(RVn,BVn)/) (for this result, ¢ = 4 suffices). See Lemma S1.1 in Appendix S1 and the
proof of Theorem Together with Condition A(i), Condition A(ii) is used to show that a CLT
holds for \/n (RV;* — E* (RV,"), BV, — E* (BV,"))" in the bootstrap world. In particular, since the
summation terms in BV," are lag-one dependent, we adopt a large-block-small-block argument, where
the large blocks are made of L, consecutive observations and the small block is made of a single
element. Part (ii) ensures that the contribution of the small blocks is asymptotically negligible. The

proof of Theorem then follows by showing that f/,’f =T I/CTQ:L Pv=r1 @ under Condition A(i)
(this follows from the convergence of the multipower variations of ]' of eighth order, explaining why
we require g < 8).

The bootstrap test rejects Hy : w € €y against H; : w € ; whenever w € C,;, where the
bootstrap critical region is defined as C}; = {w: T}, (w) > Thi—a (w)}, where @p1—o (W) is such that
P* (T (w) < G ia (w)) = 1 — a. Since Ty, N N (0,1) on Qo, the fact that T SN N (0,1), in
prob-P, ensures that the test has correct size asymptotically. Under the alternative (i.e. on ;) since
T, diverges at rate y/n, but we still have that T.f N (0,1), the test has power asymptotically. The

following theorem follows from Theorem and the asymptotic properties of T,, under Hy and under
H;.

<

Theorem 3.2 Suppose T, SN (0,1), in restriction to Qo, and T, £, +oo on Q1. If Condition
A holds, then the bootstrap test based on T, controls the asymptotic strong size and is alternative-
consistent.

3.2 Bootstrap validity when ¢} is based on thresholding

In this section we verify Condition A for the following choice of 07"

n

1 o
iU = T D Tl Dbt sy <}
m=1



where ¢t =1,..., kﬂn and j =1,...,k,. Here, k,, is an arbitrary sequence of integers such that k,, — oo
and k,/n — 0 and u, is a sequence of threshold values defined as u, = an™% for some constant
a>0 and 0 < w < 1/2. We will maintain these assumptions on k, and w, throughout. The
estimator 97 is equal to n~! times a “spot volatility” estimator that is popular in the high-frequency
econometrics literature under jumps (see e.g. Mancini (2001) and Ait-Sahalia and Jacod (2009)). By
excluding all returns containing jumps over a given threshold when computing ', we guarantee that
the bootstrap distribution of 7' converges to a N (0,1) random variable, independently of whether
there are jumps or not. This is crucial for the bootstrap test to control asymptotic size and at the
same time have power.
The following lemma is auxiliary in verifying Condition A.

Lemma 3.1 Assume that X satisfies , (@ and @ such that Assumption H-2 holds. Let q =
Zle qr with g > 0 and K € N. If either of the following conditions holds: (a) ¢ > 0 and X is
continuous; (b) q < 2; or (c) q > 2, Assumption H-r holds for some r € [0,2), and 2‘1(1;_17, <w< %;
then

n K 1
w2 3T (60 )™ s / oldu > 0.
i=K k=1 0

Lemma follows from Theorem in Appendix A, a result that is of independent interest
and can be seen as an extension of Theorem 9.4.1 of Jacod and Protter (2012) (see also Jacod and
Rosenbaum (2013)). In particular, Theorem [A.1| provides a law of large numbers for smooth functions
of consecutive truncated local realized volatility estimators defined on non-overlapping time intervals.
Instead, Theorem 9.4.1 of Jacod and Protter (2012) only allows for functions that depend on a single
local realized volatility estimate even though they are possibly based on overlapping intervals. Re-
cently, Li et al. (2017b) focus on a single local realized volatility estimate based on non-overlapping
intervals and extend the limit results of Theorem 9.4.1 of Jacod and Protter (2012) to a more general
class of volatility functionals that do not have polynomial growth (see also Li and Xiu (2016) for an
extension to overlapping intervals). Here, we restrict our attention to functions that have at most
polynomial growth, which is enough to accommodate the blocked multipower variations measures of
Lemma[3.1] Our conditions on w depend on the polynomial growth rate of the test function, requiring
in particular a narrower range of values for w as ¢ increases (as part (¢) of Lemma shows). It
would be interesting to extend the results of Li et al. (2017b) and Li and Xiu (2016) to consecutive
truncated local realized volatility estimators so as to allow for more general test functions and remove
the dependence of @ on ¢ (even if at the cost of introducing more stringent conditions on k).

Given this result, we can state the following theorem.

Theorem 3.3 Assume that X satisfies , (@, @ such that Assumption H-2 holds. If in addition,
either of the two following conditions holds: (a) X is continuous; or (b) Assumption H-r holds for some
rel0,2) and Tzr <w< %; then the conclusion of Theorem holds for the thresholding-based
bootstrap test T .

Theorem [3.3|shows that the thresholding-based statistic T)f is asymptotically distributed as N (0,1)
independently of whether the null of no jumps is true or not. This guarantees that the bootstrap jump
test has the correct asymptotic size and is consistent under the alternative of jumps. Note that under
the null, when X is continuous, the result holds for any level of truncation, including the case where
Uy = 00, which corresponds to no truncation. Nevertheless, to ensure that 7T); is also asymptotically
normal under the alternative hypothesis of jumps some truncation is required. Part (b) of Theorem (3.3
shows that we should choose u,, = an™%® with 16% <w< %, a condition that is more stringent than
the usual condition on @ (which is 0 < w < 1/2). The lower bound on w is an increasing function



of r, a number that is related to the degree of activity of jumps as specified by Assumption H-r. For
finite activity jumps where r = 0, w should be larger than or equal to 7/16 but strictly smaller than
1/2. As r increases towards 2 (allowing for an increasing number of small jumps), the range of values
of w becomes narrower, implying that we need to choose a smaller level of truncation in order to be
able to separate the Brownian motion from the jumps contributions to returns.

The following result is a corollary to Theorem

Corollary 3.1 Assume that X satisfies , @, (@ such that Assumption H-r holds for some r €
[0,2) and let up, = an™% with Tzr <w< % Then, the conclusions of Theorem are true for the
thresholding-based bootstrap test T.

4 Second-order accuracy of the bootstrap

In this section, we investigate the ability of the bootstrap test based on the thresholding local realized
volatility estimator to provide asymptotic higher-order refinements under the null hypothesis of no
jumps. Our analysis is based on the following simplified model for X,

t
X, = / osdWs, (8)
0

where o is cadlag locally bounded away from 0 and fot 02ds < oo for all t € [0,1]. In addition, we
assume that o is independent of W. Thus, we not only impose the null hypothesis of no jumps under
which J; = 0, but we also assume that there is no drift nor leverage effects. Under these assumptions,
conditionally on the path of volatility, r; ~ N (0,v]") independently across i, a result that we will
use throughout this section. Allowing for the presence of drift and leverage effects would complicate
substantially our analysis. In particular, we would not be able to condition on the volatility path
o when deriving our expansions if we relaxed the assumption of independence between ¢ and W.
Allowing for the presence of a drift would require a different bootstrap method, the main reason being
that the effect of the drift on the test statistic is of order O (n_l/ 2) and our bootstrap returns have
mean zero by construction (see Gongalves and Meddahi, 2009). We leave these important extensions
for future research.

To study the second-order accuracy of the bootstrap, we rely on second-order Edgeworth expansions
of the distribution of our test statistics 7;, and T¢. As is well known, the coefficients of the polynomials
entering a second-order Edgeworth expansion are a function of the first three cumulants of the test
statistics (cf. Hall, 1992). In order to derive these higher-order cumulants, we make the following
additional assumption. We rely on it to obtain the limit of the first-order cumulant of T, (cf. K13
below).

Assumption V The volatility process o2 is pathwise continuous, bounded away from zero and

Holder-continuous in L?(P) on [0,1] of order § > 1/2, i.e., E ((o—g — 03)2) = O(Ju — s|%).

This assumption is useful to derive explicitly the probability limit of nE (RV,, — BV,|F), which
contributes to the higher order bias of the BN-S statistic. It imposes that the volatility path is
continuous and, in addition, rules out stochastic volatility models driven by a Brownian motion.
Examples of processes that satisfy Assumption V include the fractional Brownian motion with Hurst
parameter larger than 1/2 as well as the fractional stochastic volatility model introduced by Comte
and Renault (1998).



4.1 Second-order expansions of the cumulants of 7,

Next we provide asymptotic expansions for the cumulants of T},. For any positive integer i, let x; (T},)
denote the i*" cumulant of T,,. In particular, recall that k1 (Ty,) = E(Ty), k2 (Ty) = Var(T,) and
k3 (T,) = E(T,, — E(T,))3. In addition, for any ¢ > 0, we let 07 = fol oddu.

Theorem 4.1 Assume that X satisfies (@ and Assumption V holds, where o is independent of W .
Then, conditionally on o, we have that

1 1 62402 a ob 1
- (s 2 Yoy

=K1=K1,11tK1,2

ke (T,) = 1+O<1>; and

kg (Th) = \/15<a2+2(a1a3))(j;3/2+0<i>,

(2

=K3

where T = (k1_4 - 1) + 2 (kl_Q — 1) — 2 and the constants a1, az and a3 also depend on ky = E|Z|%,
Z ~ N (0,1), for certain values of ¢ > 0; their specific values are given in Lemma S2.5 in the Appendiz.

Theorem [4.1]shows that the first and third order cumulants of 7T}, are subject to a higher-order bias
of order O (n_l/ 2), given by the constants x; and k3. Since the asymptotic N (0,1) approximation
assumes that the values of these cumulants are zero, the error of this approximation is of the order
O (n-12).

The bootstrap is asymptotically second-order accurate if the bootstrap first and third order cumu-
lants mimic x; and k3. As it turns out, this is not true for the bootstrap test based on 7T¥. The main
reason is that it fails to capture x1,1, a bias term that is due to the fact that bipower variation is a
biased (but consistent) estimator of IV. To understand how this bias impacts the first-order cumulant
of T,,, note that we can write

-1/
T, = ‘/E(R% BVa) _ (Sn + Ap) (1 + \}ﬁ (Un + Bn)) - ; 9)
where
g Vv (RV,, — BV,, — E(RV,, — BV,,))
n - \/‘TH b
W _ VAE(RV,—BV.) . Vit (V- BV.)
" VVa R VVa ’
n(EV, -V,
B, = f< ) , and V, = Var (v/n (RV, — BV,,)) .

VvV

By construction, conditionally on o, E (S,) = 0 and Var (S,) = 1; the variable S,, drives the usual
asymptotic normal approximation. The term A, is deterministic (conditionally on o) and reflects
the fact that E (RV,, — BV,) # 0 under the null of no jumps. In particular, we can easily see that



E(RV,, — BV,) = IV — E(BV,). Thus, A, reflects the bias of BV,, as an estimator of IV. We can
show that A, = O (n_l/ 2) , implying that to order O (n_l), the first-order cumulant of 7T;, is

\F<IA (SU)>+O(:L).

n'g

—K1,1tK1,2=K1

k1 (Ty) =

The limit of \/nA, is k1 1. This follows by writing

JiA, = (I\‘ijV (Z Z} 1/2 |1/2> ’

and noting that by Lemma S2.3 (in Appendix S2),

(Z Z}v " ”'1/2>i>§(08+a%)7 (10)

=1

where IV =>"

zlz’

and V, Py roh o4, under Assumption V.
Next we Show that the bootstrap test based on 7 does not replicate 1,1 and therefore is not
second-order correct. We then propose a correction of this test and show that it matches x; and ks.

4.2 Second-order expansions of the bootstrap cumulants

Write
r1(T)) = ﬁ“ln +op % and w3 (T)) = %/@m + op % )

where k7, and k3, are the leading terms of the first and third order cumulants of 7};; they are a

function of the original sample and hence depend on n. Their probability limits are denoted by ]
and 3 and the following theorem derives their values.

Theorem 4.2 Assume that X satisfies (@) and Assumption V holds, where o is independent of W.
Suppose that ky,, — oo such that ky,/n — 0, \/n/ky, is bounded and u, is a sequence of threshold values
defined as u, = an~% for some constant o > 0 and 0 < w < 1/2. Then, conditionally on o, we have
that K] = K12 # K1 and k3 = K3, where K12, k1 and K3 are defined as in Theorem .

Theorem shows that the bootstrap test based on 7 only captures x; partially and therefore
fails to provide a second-order asymptotic refinement. The main reason is that by construction the
bootstrap analogue of A, (which we denote by A}) is zero for 7). Because the original test has
A, # 0, the bootstrap fails to capture this source of uncertainty. Note that the conditions on u,
used by Theorem specify that w € (0,1/2), but the result actually follows under no restrictions
on u, since we assume that X is continuous (this explains also why we do not require strengthening
the restrictions on w as we did when proving Theorem [3.3)).

Our solution is to add a bias correction term to 7, that relies on the explicit form of the limit of
VnA,,. In particular, our adjusted bootstrap statistic is given by

T = Vn (RV;y — BV;r — E* (RV,; — BV;})) n 1/n (07 + o7)
v 2o

n n

=T+ R,
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where R} can be written as R}, = ,/ 5" Ay, Since no)" is equal to a spot volatility estimator, it follows
that ) )
1n (07 + 07 1(og+o0o
\/ﬁAzzfi( 1 * n) P 77( 0 71) = K11

2 Vi 2 Tot

under our assumptions. Hence, T)*is able to replicate the first and third order cumulants through
order O (n_l/ 2) and therefore provides a second-order refinement. The following theorem provides the
formal derivation of the cumulants of T;;. We let K] and =3 denote the probability limits of &}, and

3, the leading terms of the first-order and third-order bootstrap cumulants of T}

Theorem 4.3 Under the same assumptions as Theorem conditionally on o, we have that K] = K1
and K3 = K3, where k1 and k3 are defined as in Theorem |4.1).

5 Monte Carlo simulations

In this section, we assess by Monte Carlo simulations the performance of our bootstrap tests. Along
with the asymptotic testﬁ of BN-S (2006), we report bootstrap results using 9;" based on the thresh-
olding estimator. We follow Jacod and Rosenbaum (2013) and set k, = [/n]. We also follow Podolskij
and Ziggel (2010) and choose w = 0.4 and a = 2.3y/BYV,, for the truncation parameters.

We present results for the SV2F model given byE|

dXt = adt + Uu,tUsv,tth + th,

outr = CH+A-exp(—ait)+ B-exp(—az(1—1)),
Oyt = s-exp(Bo+ BiTie + Patoy),
driy = oimiedt +dByg,

dro; = omodt + (14 ¢p1oy) dBay,
corr (dWy,dB1y) = p1, corr (AW, dBay) = po.

The processes 0, and o0y, represent the components of the time-varying volatility in prices. We
follow Huang and Tauchen (2005) and set a = 0.03, 8y = —1.2, 51 = 0.04, B2 = 1.5, ay = —0.00137,
ag = —1.386, ¢ = 0.25, p1 = po = —0.3. At the start of each interval, we initialize the persistent
2ar
is started at 759 = 0. The process 0, models the diurnal U-shaped pattern in intraday volatility. In
particular, we follow Hasbrouck (1999) and Andersen et al. (2012) and set the constants A = 0.75,
B = 0.25, C' = 0.88929198, and a; = ao = 10. These parameters are calibrated so as to produce a
strong asymmetric U-shaped pattern, with variance at the open (close) more than 3 (1.5) times that
at the middle of the day. Setting C =1 and A = B = 0 yields o, = 1 for ¢ € [0, 1] and rules out
diurnal effects from the observed process X.

Finally, for our power analysis, we consider two alternative data generating processes. Specifically,
we first generate J; as a finite activity jump process modeled as a compound Poisson process with

factor 7y by 710 ~ N (0 , its unconditional distribution. The strongly mean-reverting factor 7

constant jump intensity A\ and random jump size distributed as N (0, sz'mp)- We let szmp = 0 under
the null hypothesis of no jumps. Under the alternative, we let A = 0.058, and sz-mp = 1.7241.

4Following common practice, we implement the BN-S test statistic using a version of BV, and [/C\Qn that contains
a finite-sample correction of the bias introduced by boundary effects. In particular, we multiply BV, with the factor
n/(n —1) and 1Q,, with n/ (n — 2). These same corrections are used when constructing the bootstrap statistics.

5The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(z) = exp(z) if # < zo and s-exp(z) = —22ED__ if 3 > 3, with 2o = log(1.5).

\/10—184-12
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These parameters are motivated by empirical studies by Huang and Tauchen (2005) and Barndorft-
Nielsen, Shephard, and Winkel (2006), which suggest that the jump component accounts for 10% of
the variation of the price process. Second, we consider J; as a symmetric tempered stable process with
Lévy measure v(dz) = ¢; %dx, where ¢; > 0, d; > 0, and r € [0, 2] measures the degree of jump
activity. We let dy = 3 and r = 0.5. We note that this choice of r produces an infinite-activity, finite-
variation jump process. ¢ is calibrated so that J; accounts for 10% of the quadratic variation. For a
similar parameterization, see Ait-Sahalia and Xiu (2016) and Hounyo (2017). We follow Todorov et
al. (2014) and generate J; as the difference between two spectrally positive tempered stable processes,
which are simulated using the acceptance-rejection algorithm of Baeumer and Meerschaert (2010).

We simulate data for the unit interval [0,1] and normalize one second to be 1/23,400, so that
[0, 1] is meant to span 6.5 hours. The observed process X is generated using an Euler scheme. We
then construct the 1/n-horizon returns r; = X;/, — X(;_1)/, based on samples of size n. Results are
presented for four different samples sizes: n = 48, 78, 288, and 576, corresponding approximately to
“8-minute”, “5-minute”, “1,35-minute”, and “40-second” frequencies.

Table (1| gives the 5% nominal level rejection rates. Those reported in the left part of Table
(under no jumps) are obtained from 10,000 Monte Carlo replications with 999 bootstrap samples for
each simulated sample for the bootstrap tests. For finite activity jumps, since J; is a compound
Poisson process, even under the alternative, it is possible that no jump occurs in some sample over
the interval [0,1] considered. Thus, to compute the rejection rates under the alternative of jumps we
rely on the number ng of replications, out of 10,000, for which at least one jump has occurred. For
our parameter configuration, ng = 570.

Starting with size, the results show that the linear version of the test based on the asymptotic
theory of BN-S (2006) (labeled “AT” in Table (1)) is substantially distorted for the smaller sample
sizes. In particular, for the SV2F model without diurnal effects, the rejection rate is 15.44% for
n = 48, decreasing to 8.45% for n = 576. As expected, the log version of the test has smaller size
distortions: the rejection rates are now 12.66% and 7.67% for n = 48 and n = 576, respectively.
The rejection rates of the bootstrap tests are always smaller than those of the asymptotic tests and
therefore the bootstrap outperforms the latter under the null. This is true for both bootstrap jump
tests based on (|6)) and (denoted “Bootl” and “Boot2”, respectively) and for both the linear and
the log version of the test.

When X has diurnality patterns in volatility, we apply the tests to both raw returns and to
transformed returns with volatility corrected for diurnal patterns. We use the nonparametric jump
robust estimation of intraday periodicity in volatility suggested by Boudt et al. (2011). The results
based on the raw returns appear in the middle panel of Table [I| whereas the bottom panel contains
results based on the transformed returns. We can see that the test based on the asymptotic theory of
BN-S has large distortions driven by the difference in volatility across blocks, even if the sample size
is large. As expected, corrections for diurnal effects help reduce the distortions. The bootstrap null
rejection rates are always smaller than those of the asymptotic theory-based tests. This is true even for
the bootstrap test applied to the non-transformed intraday returns, which yields rejection rates that
are closer to the nominal level than those obtained with the asymptotic tests based on the correction
of the diurnal effects (compare “Boot2” in the middle panel with “AT” in the bottom panel). This is
a very interesting finding since it implies that our bootstrap method is more robust to the presence of
diurnal effects than the asymptotic theory-based tests. Of course, even better results can be obtained
for the bootstrap tests by resampling the transformed intraday returns and this is confirmed by Table
[[l These results also reveal that Boot2 outperforms Bootl, in particular for smaller sample sizes.

Turning now to the power analysis, for finite activity jumps, results in Table [1| (center panel) show

5Note that our bias correction adjustment of the bootstrap test is specific to the linear version of the statistic (as it
depends on its cumulants). Since we have not developed cumulant expansions for the log version of the statistic, we do
not report the analogue of “Boot2” for this test.
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that the bootstrap tests have lower power than their asymptotic counterparts, especially in presence of
diurnal effects. This is expected given that the latter have much larger rejections under the null than
the bootstrap tests. The results also show that power is largest for tests applied to the transformed
returns. For these tests, the difference in power between the bootstrap and the asymptotic tests is
very small. Given that the bootstrap essentially eliminates the size distortions of the asymptotic test,
these two findings strongly favor the bootstrap over the asymptotic tests.

For infinite activity jumps, the right panel of Table [1| shows that power drops significantly for all
tests when there are no diurnal effects, confirming that the BN-S tests are not always the most powerful
ones under infinite activity jumps. In unreported simulations, we found that the “small jumps” test
by Lee and Hannig (2010) has more power in these situations, which is in line with previous results
in the literature. Interestingly, the combination of stochastic volatility with diurnality and infinite
activity jumps seems to restore power across all tests.

6 Empirical results

This empirical application uses trade data on the SPDR S&P 500 ETF (SPY), which is an exchange
traded fund (ETF) that tracks the S&P 500 index. Our primary sample comprises 10 years of trade
data on SPY starting from June 15, 2004 through June 13, 2014 as available in the New York Stock
Exchange Trade and Quote (TAQ) database. After cleaning this data set using the procedure suggested
by Barndorff-Nielsen et al. (2009) and removing short trading days, we are left with 2497 observations
for the whole period. In addition, we consider three subperiods: ‘Before crisis’, through August 29
2008 (1053 trading days); ‘Crisis’, from September 2, 2008 through May 29, 2009 (185 trading days),
and ‘After crisis’, from June 1, 2009 through June 13, 2014 (1259 trading days).

Table 2| shows the percentage of days identified with a jump (“jump days”) by the asymptotic and
bootstrap tests. We consider the asymptotic version of the linear and the log test statistics as well as
their bootstrap versions. For the linear bootstrap test, we rely on “Boot2”, which does best in finite
samples according to our simulations. For the log version of the bootstrap test, we rely on “Bootl”.
These tests are applied to data with and without correction for diurnal effects and are based on 5-min
returns throughout. This yields 78 daily observations over the 6.5 hours of the trading session.

In line with the simulation findings, the asymptotic tests tend to substantially over detect jumps
compared to the bootstrap tests, which throughout detect about half of the number of jump days
detected by the asymptotic tests. More precisely, with no account for diurnal effects, the asymptotic
(linear and log) tests detect 26.31% and 23.27% jump days, respectively, while the bootstrap tests
detect 13.7% and 16.9% jump days. These percentages are about the same as what is obtained before
and after crisis. During the crisis though, less jump days (in proportion) are detected.

We also report test results applied to returns corrected for diurnal effects. This is particularly
relevant because Figure [1| suggests that these are important in our application. The U-shape of these
graphs highlights the fact that the market seems to be more volatile early and late in daily trading
sessions compared to the mid-day volatility. We can also see that the gap between early/late and
mid-day volatilities is magnified in the crisis period. After correction for diurnal effects, less jumps
days are detected by all the tests before and after crisis. However, in the crisis period, while the
bootstrap still detects about the same number of jump days, the asymptotic tests detect substantially
more jumps after diurnal effects correction. It is also worthwhile to point out that the gap between
the bootstrap linear and log tests narrows as diurnal effects are accounted for. Overall, the bootstrap
tests seem more robust to diurnality than the asymptotic tests.
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Table 2: Percentage of days identified as jumps day by daily statistics (nominal level & = 0.05) using
5-min returns.

No correction for diurnal effects With correction for diurnal effects
AT-lin AT-log Boot2-lin Bootl-log AT-lin AT-log Boot2-lin Bootl-log

Full sample: June 15, 2004 through June 13, 2014 (2497 days)
26.31 23.27 13.70 16.90 24.23 20.54 12.66 14.46
Before crisis: June 15, 2004 through August 29, 2008 (1053 days)
25.55 22.41 13.11 16.43 22.41 18.99 12.73 14.06
During crisis: September 2, 2008 through May 29, 2009 (185 days)
21.62 19.46 10.81 13.51 24.32 21.62 11.35 12.97
After crisis: June 1, 2009 through June 13, 2014 (1259 days)

27.64 24.54 14.61 17.79 25.73 21.68 12.79 15.01

Notes: ‘AT-lin’ and ‘Boot2-lin’ (‘AT-log’ and ‘Bootl-log’) stand for asymptotic and
bootstrap tests using the linear (log) version of the test statistic. ‘Boot2-lin’ uses the
second-order corrected bootstrap test statistic for asymptotic refinement.
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Figure 1: Diurnal pattern of SPY. The graph displays the average (over the specified samples) of absolute
5-min returns of each trading day. ‘Before crisis’ refers to the sample from June 15, 2004 through
August 29, 2008; ‘During crisis’ refers to the period from September 2, 2008 through May 29, 2009,
and ‘After crisis’ refers to the period from June 1, 2009 through June 13, 2014.

7 Conclusion

The main contribution of this paper is to propose bootstrap methods for testing the null hypothesis
of “no jumps”. The methods generate bootstrap returns from a Gaussian distribution with variance
given by a local realized measure of integrated volatility {0]'}. We first provide a set of high level
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conditions on {0/} such that any bootstrap method of this form is asymptotically valid when testing
for jumps using the BN-S test statistic. We then provide a detailed analysis of the bootstrap test
based on a thresholding estimator for {o}'}.

A second contribution of this paper is to discuss the ability of the bootstrap to provide second-
order asymptotic refinements over the usual asymptotic mixed Gaussian distribution under the null
of no jumps. Our results show that our bootstrap test is not second-order accurate because it is not
able to match the first-order cumulant of the test statistic at higher order. We therefore propose a
modification of the original bootstrap test for which an asymptotic refinement exists. The modification
consists of adding a bias correction term that estimates the contribution of the bipower variation bias
to the first-order cumulant of the original test. Our simulations show that this adjustment is important
in finite samples, especially for the smaller sample sizes when sampling is more sparse.

We illustrate the usefulness of our bootstrap jumps test by applying it to 5-min returns on the
SPY index over the period from June 15, 2004 through June 13, 2014. Overall, the main finding is
that the bootstrap detects about half of the number of jump days detected by the asymptotic-theory
based tests.

Appendix A: A law of large numbers for functions of non-overlapping
local volatility estimates

In this section, we state and prove Theorem a result that is auxiliary in proving Lemma As
noted in the main text, Theorem has merit on its own right as it extends Theorem 9.4.1 of Jacod
and Protter (2012) to the case of smooth functions of consecutive local realized volatility estimates
rather than a single local estimate. Let

kn
- n § r2 1
Jm k G—Dkn+m "G -1 kn+m|Zun}>
" m=1
=L withr =X — X, i=1,....,ny u,=an %, we (0,%) and k, is a sequence of

integers satisfying k,, — oo and %" — 0 asn— oo.

Theorem A.1 Assume that X satisfies Assumption H-2, and let g be a continuous function on Rﬂ_
such that |g(z1,...,z0)| < K (14 |x1|P 4 - - + |z4|P) for some p > 0. If either: (a) X is continuous;
(b) p<1; or (c) Assumption H-r holds for some r € [0,2) andp >1, w > iz—:i; then

k

o
n

— P A R 2 2

Gn = Z 9 (Cjms Cj—1ms- - Cimtrin) = / g(o%,...,05)ds.
, 0

j=t

In the proof, we will follow the standard localization argument of Jacod and Protter (2012) and
assume without loss of generality that the following stronger version of Assumption H-r holds:

Assumption SH-r Assumption H-r holds, and in addition the processes a and o are bounded, and
|6(w, t,z)| A1 < ~y(x) with [ |y(z)|"dz < cc.

Proof. We follow the proof of Theorem 9.4.1 of Jacod and Protter (2012). By localization, we
assume without loss of generality that SH-r holds with » = 2 for p < 1 and that g > 0.

Step 1: We first assume that g is bounded. For all s € [0,1] and [ = 1,...,¢, let ég)(s) = Cjtin
when (j — 1)%" <s< j%", where ¢, = 01if j > n/k,. We have

ki 1—¢kn
Gn = ;g (éf,na éZ—l,m cee 761,71) + / g (é,(f)(s), s 76%1)(8)) ds.
0
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k;:‘ + fo B s)ds, with

Thus, (‘G —folg(ag,...,ag) dsD

an(s) = E‘g (c(é)( ) ...,égll)(s)) —g(af,...,a )
for all s € [0,1) by using the same argument as in the proof of Theorem 9.3.2(a) of Jacod and Protter
(2012), implying that a,(s) tends to 0 as n — oo for each s and is bounded uniformly in (n,s). The
result then follows by the dominated convergence theorem.

Step 2: Let ¢ be a C* function: Ry — [0,1] with 1pp »)(z) < 9(x) < 1[%700)(1:), and Y. (x) =

(wl/e) and L = 1= . Form > 2, let g(w1, -, 7¢) = g1, - 50) [Ty V(1) and g = g gl
Since g}, is continuous and bounded, for any fixed m, by Step 1,

IN
T

Since g is bounded, we can claim that &l )( ) L o2

n/kn

k . R p (!
;n Z G (Cjms Cimims -y Cjmtg1m) = /0 g (c2,...,0%)ds.
j=¢
Note that fol g (o2, 0%)ds = fol g(02,...,02)ds for m large enough since o2 is bounded and

P! (x) = 1for |z| < m/2. Thus, the result follows by showing that %" E] /IZ" Gm (Cjms Ci—tms -+ Citgin)

is negligible for large n and m. By assumption,

l l
gm(z1,...,20) < K (1 + Z \:Ul|p> (1 - Hd)?'n(:z:l))
=1 =1
where 1 — [T, !, (z1) < b, Ljzy|>my, since ¢, (z) = 1 if [z;] < m/2 and both sides of the

l

inequality are nil if [z;] < m/2 for all [. If [z;| > m/2 for some [, then > 1 >my 21> 1~
=1

l L 4

H ! (7). Also, if |x;] > m/2 for some [, we have that 1+Z |z [P < 2 Z |z;|P. Thus, gm(z1,...,2¢) <

2K Z |1[P1{z,/|> . Therefore, to complete the proof, it suffices to show that
L=

/kn
. ko N
i tmsup B | S50 8 Ly om) | =0 (a.1)
for all I,/ =1,...,/¢. Consider first p < 1. Letting x = 0 when X is continuous and x = 1 otherwise,
for ¢ > 2, we can show that E(|r;|?) < K, <# + /@W) and, from the ¢,-inequality, F (é§n> <

K, (1 + Koarr= .- q) By successive applications of the Holder and Markov inequalities, for any g > p:

E(&1(,m) < (E <cqn>>§ (P (6 >m)) 4

L/ =7 K, 1
~q a ~q
< ((d.)) (qu@zn)) T <1+“nqm q>

Take ¢ = 2p if X is continuous and ¢ = 1 > p otherwise and conclude (A.1]).

Next, consider p > 1. With the same alternative decomposition of X as that in Jacod and Protter
(2012, Eq. (9.2.7)), we write r; = r1; + 79;, with r1; and r9; the increments of the process X’ and X",
respectively. We have that

73,
T1'21{|Ti|Sun} <2 <T%l + U?L <u221 VAN 1)) <K (Ti + ui (nw\rzi\ A 1)2> ,

n
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where we use for the last inequality the fact that (a/b) A 1 < max(1,1/b)[a A 1], with a,b > 0. Thus,
Cjn < i+ (fp, With

k k
1 < 02 & 9

Gin = Kl? Z(\/ﬁﬁ,(]‘_1)kn+m)27 = Kk*n Z n|ro (= 1ykptml A1)
" m=1 " m=1

with v, = \/nu,. Noting that

A éi,néj,n 1 %) ) 1 /2 12 Z 172
Cinl(eyuomy S =25 < o (80 + En) < — ( in T Cin + CGn + G, ) )

by the cy-inequality, FE (égnl{éj,an}) < 1 ( (Clzp) +E(<//2p) +E(C/2p) +E(<//2p)>- Moreover,

mP
Eqgs. (9.2.12) and (9.2.13) of Jacod and Protter (2012) ensure that F ((\/ﬁ]rh\) ]Fﬂ) < K, and
E ((nw\rgi\)2 A 1].7-7:) < Kn~ 1%, with ¢, — 0 as n — oo. Thus, by a further application of the
¢-inequality, E( ],22) < K, whereas

4p kn 4p kn
2 4 v 2
E((n) K;T B <(nw|7"2,(j—1)kn+m! A1) p) = Kki > E ((nw‘TQv(j‘l)’“"J“m' A1) )

n

IN

m=1 m=1

1
< Kn4p(_w+§)n_1+Tw¢n = Kn “én,

mP

with w =1 —2p+ w(4p — r). Thus, E <éﬁn1{éj,n2m}) < B (14n""¢,). Since w > 0 under the

maintained assumptions, (A.1]) follows.
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