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A Reproducing the Bansal and Yaron (2004) Model with a Markov-Switching
Model

We start with the LRR model of BY for the endowment!:
Acpr1 = ¢ + 0vec it
Adiry = (1 = ¢q) pia + Gas + VaOr€q i1
T = (1 — @u) flo + Gut + ViOrer 11

U1t2+1 = (1 - ¢0) Mo + ¢0'O-t2 + Vo€ot+1

where
€c,t+1 0 1 pp 00
€d,t+1 0 pp 100
€zt 41 | Jo~NID 0]’ 0 0 10
€o,t+1 0 0 0 01

The main features of this multivariate process are:

1. The expected means of the consumption and dividend growth rates are a linear func-

tion of the same autoregressive process of order one denoted xy;

2. The conditional variances of the consumption and dividend growth rates are a linear

function of the same autoregressive process of order one denoted o?;
3. The variables z;,; and O't2+1 are independent conditionally to past information;

4. The innovations of the consumption and dividend growth rates are correlated condi-

tionally to past information.

Our goal here is to characterize a Markov Switching (MS) model:

Aciyr = pe(se) + (we (St))1/2 Eet+1 (A.2)
Adpyr = pa(se) + (wa (St))l/2 Edt+15

where e.,41 and €441 follow a bivariate standard normal process with mean zero and
correlation p;. The MS model (A.2) will have the same features as the original endoment
model (A.1).

For the MS model, the first characteristic of the Bansal and Yaron (2004) model implies
that one has to assume that the expected means of the consumption and dividend growth
rates are a linear function of the same Markov chain with two states given that a two-state
Markov chain is an AR(1) process. Likewise, the second one implies that the conditional

variances of the consumption and dividend growth rates are a linear function of the same

!Note that in the original modelof BY the parameter p;was zero.



two-state Markov chain. According to the third characteristic, the two Markov chains
should be independent. Consequently, we should assume that the Markov chain s; has 4
states, two states for the conditional mean and two states for the conditional variance, and
that the transition matrix P is restricted such as the conditional mean and the conditional
variance are independent. Finally, the last characteristic implies that the correlation vector
in the four states is equal to (p1, p1, p1,p1) " -

We would like to match an AR(1) process, say z, like z; or o2 by a two-state Markov
chain, say z;. We assume that z; = a + by, where y; is a two-state Markov chain that takes

the values 0 (first state) and 1 (second state), and where the transition matrix P, of y; is

PT — Py11 I —pyu
v 1 —pyo2 Dy,22 '
y7 y7

The (unconditional) stationary distribution of y, is

given by:

1- Dy,22
2 — Py,11 — Py,22

1—
, Ty = Prob(y=1) Pplt (A.3)

my1 = Prob(y, =0) = :2—]9 ———
Y, Y,

Without loss of generality, we assume that b > 0, i.e. the second state corresponds to the
highest value of z;.

Our goal is to find the vector 8 = (py 11, Dy22, @, b)T so that moments of the two-state
Markov chain z; are equal to moments of the AR(1) process z;. The first moments we
want to match are the mean, the variance and the first-order autocorrelation of the AR(1)
process z; denoted p., o2 and ¢, respectively. Given that the dimension of the vector 6
is four, another restriction is needed. For instance, Mehra and Prescott (1985) assumed
Py.11 = Py22. In contrast, we will focus on matching the kurtosis of the process z; denoted
k.. We will show below that matching the mean, the variance, the kurtosis and the first-
order autocorrelation does not fully identify the parameters. However, knowing the sign of
the skewness of z; (denotes s,) and the four other moments will fully identify the vector 6.

The moments of the AR(1) process z; are related to those of the two-state Markov chain

y; as follows:

fy = a+ by, =a+bmy,

()

_ 2.2 _ 12
o, =b"o, = b"my1my

G2 = Py = Pyi1 + Py —1

ey (A4)
k. =k — y,1 Y,2
z — hy — —— + —=
Ty2 Ty
Ty, 1 — Ty2

5, =8, =

Ty, 1Ty,2



Equation (A.4) combined with (A.3) characterizes the moments of the AR(1) process in
terms of the vector #. As pointed out above, Mehra and Prescott (1985) assumed that
Dy,11 = Dy,22, Which implies s, = 0 and k., = 1. The empirical evidence reported in Cecchetti,
Lam and Mark (1990) suggests that the kurtosis of consumption growth is higher than one
and that its skewness is negative.? We will now invert the characterization (A.4), that is,
we will determine the vector € in terms of the moments of z;.

The vector 6 of parameters of the two-state Markov chain that matches the AR(1)

process z; is given by:

1+¢, 1—¢, [k, —1 1+6, 1—¢, [k—1,

— — == <
Py.11 9 2 V& 13 Do 5 T3 V& +3 if 5. <0,
1+¢, 1—¢, [k, —1 l+¢, 1—¢, [k.—1.

Py.11 5 T3 V&, + 3 Pu2 2 2 Vit3'?® >0,

b=

A /7Ty7171'y72’

and 7, ; and m, o are connected to p, 11 and p, 9o through (A.3).

a =, —bmys

The mean p, and the first autocorrelation ¢, of z;, and the mean u, and the first
autocorrelation ¢, of o2 are given in (A.1). The variance, the skewness and the kurtosis of

7, and o? are given by:

2 212 2 2

2 Vil (1 - (b:c) ¢x ¢0 Vs
i = o (-2

2

2 V

i

(A.6)

o Se =0, ky = 3.

Observe that the skewness of the conditional mean of consumption growth equals zero
in Bansal and Yaron (2004) as in Mehra and Prescott (1985). In contrast, in order to
generate a kurtosis higher than one, the Markov switching needs some skewness. Given
that the skewness of consumption growth is empirically negative, we make this identification
assumption, that is, we use the first line in (A.5) to identify the transition probabilities
Pe,11 and pg .

Likewise, the skewness of the conditional variance is zero in Bansal and Yaron (2004),
somewhat unrealistic given that the variance is a positive random variable. A popular
variance model is the Heston (1993) model where the stationary distribution of the variance
process is a Gamma distribution. Given that the skewness of a Gamma distribution is
positive, we make the same assumption on o? and therefore, the second line in (A.5) to

identify the transition probabilities p, 11 and py 22.

2Strictly speaking, the process xz; here is the expected mean of the consumption growth and not the
growth. Therefore, the skewness and kurtosis of these two processes are different but connected.



We have now the two independent Markov chains that generate the expected mean and
variance of consumption growth. Putting together these two processes leads to a four-state
Markov chain (low mean and low variance, low mean and high variance, high mean and
low variance, high mean and high variance) whose transition probability matrix is given
by:

Pz11Po11 Pz,11Po,12  Pz,12Po,11  Pz,12P0,12
pT — Px11Po21  Pz,11P0,22 Pz12P021  Pz,12P0,22 (A.?)

DPx21Po11 Pz,21P0,12  Pz22P0,11  Pz,11P0,12
Pz21Po21  DPz21P022 Pz22P021 Px,22P0,22

where p. 1o =1 —p.1; and p. o1 = 1 — p. 99. The vectors pi., we, g, and wy defined in (A.2)
are given by:

fe = (Qg, azy ay + by, a, + bm)T

we = (

T
ag,ag‘l'bg,amaa‘l'ba) (AS)

Hd = (]- - ¢d) M€ + ¢d/£c

Wy = l/su)c.

where e = (1,1,1,1) .
B Proofs of Formulas for Asset Prices

The formulas are proved using particular properties of Markov switching processes. It is
well kown that (see, e.g., Hamilton (1994), page 679):

Yh, E[Cn | J)] = P"¢, and PMI =11 (A.9)
Also, for any vectors a,b € RY, we have:
(a"¢) (b7¢) = (a0 b)' ¢, (A.10)
In addition, we will need the following Lemma.

Lemma 0: Gien two standard normal random variables €, and es with correlation p, and
three real numbers x1, o1 and oo, one has:

1
E [exp (o161 + 02€2) 1 (€1 < x1)] = exp (5 (o7 + 2poi0s + ag)) O (x1 — (01 + pog))

(A.11)

where ® denotes the cumulative distribution function of the standard normal, and 1 (-)

denotes the indicator function.



B.1 Utility-Consumption Ratios

B.1.1 First utility-consumption ratio

Recall that the GDA certainty equivalent may be written:

I Vit T—v
al \ xRy (Vii1)

R, (Vi+1) =|L£ Vit Vti_lfy ‘ Ji
E |:]Oc,,‘€ <HRt(Vt+1)> | Jt]

where

Iny(x) =1+ (é — 1) y' 1(z < 1).

Dividing each side by C4, it follows from (A.12) that

Viti _ _ =
Rt (Vi) . Tag (n&(%ﬂ)) <Vt+1)1 ! <Ct+l>1 ! | J,
= t

o\ ) 7 ()
or
t41 1- 1
. Loy (7t) (\uGen) '™ exp (1= ) Acies)
)‘1th - E Vi Jt
E [Ia,n (HRt(‘/}Jrl)) ‘ Jt]

Notice that one has:

_ Ve — 1Vin G G _ 1)\1Tv<t+1
KRy (Vis1) £ Cia Ry (Via) C k ALG

exp (Acit1)

and that ;
AL¢ T
_ Vi <1 & < i </€Ai<ﬁi1> — e G
c,t+1 .
Ry (Verr) " (I ¢)'"”

Then, the denominator in (A.14) is given by:

)\T
st ) — 1l G

(A.12)

(A.13)

(A.14)

Vit ) } -1 1— In ( MGt
Ell,,| ———— Jil=14+(a" —1)rk "E |1] e, < -
|: ’ (FLRt (Lt+1) | ' ( ) . (w;rct)l/Z

| i



where we have

F |1 Eett+1 < | Ji
v (W ¢) t
[ i ( Alzct >
=F|EF |1 Eett+1 < zlvizl) | {CT,T € Z}, Jt | Jt
¢
(i (s - ulG In (k) = G
105t +1 106t+1
T e ) TR e
(& t c t
N In (n-illz;;t) — e, N In (Ki\i—m> AN »
:Zpst’jq) 1/2 :Zpijq) 1/2 if s =1
j=1 ¢ 5t j=1 cyi

Finally, the denominator in (A.14) is given by:

Az
Vit e n (K/\lw') —Hed ) »
El|ll, .| ———— J | =1 'YE ; f s, =1.
l ’ <5Rt(‘/t+1))| t} + pj 1/2 met

X

(A.15)

The numerator in (A.14) can be decomposed into two terms as follows:

Vi —
B 1 (it ) (W) exp (1= ) Bc) | 4]

=E [()‘1T1;Ct+1)1_7 exp (1 —7) Acpy1) |

In (Fa sl ) — ¢ G

B _ MGt
+ (O‘ t—- 1) E ()\Ivct-‘rl)l " exp (1 =7)Acir1) 1| €cppr < T+ 172 | Ji
(wc Ct)
The first term is given by:
B (M) exp (1= 9) Acr) | ]
= Elexp (1=7) Aca) | J1 B [(M,G)' ™1 ]
AT
= exXp (1 - ):uc Ct ( 9 ) wc() E [(A%v’y) Ct-‘rl | Jt]
_ T (1- 7)2 T -\ T
= €Xp (1 - 7) % Ct + 9 We Ct ()\11) ) PCt
=" Vs
= exp (1 — ’7) He,i + (.Ucﬂ') pr)\};;y if St = i, (A16)
j=1



where the first equality follows from that the processes ;41 and Ac;y; are independent
conditional to the information J;. In the second equality, we conveniently adopted the

notation a? = (af, ..., a‘]lv)T for a € Rf and ¢ € R. The expectation in the second term is
given by:

.
In (“ o ) — 1) G
E (AlT”Ct“)l_y exp ((1 —7) Acip1) 1| €cpr1 < el 1/2
(wd C)

| Ji

= E|(\.Ga) T Blexp (1= 7) Acn)

x 1 Eetr1 <

| {¢rm € Z}, T |

=k

2
()\IUCH—I)I_W exp ((1 — )l G+ (1—n wCTQ)

AL G T
o In <I€A1rj<t+l> = M Ct B

g (Wl )"

(1= W) | 12

2
= exp <(1 — V) e G+ a _27) wf@)

In (H Al ) e
T 1—y AlpGt+1 ¢ T -\1/2
x B ()‘h)Ct+1) P (;Tgt)l/z - (1 - 7) (wc Ct) | t
1—7 2
= exp <(1—7),uc7i+ ( 5 ) w“>
N -~ 1 (m—;\i”) — Heyi 1o
X Zpij)\h,,;q) '1/2 — (I =7 w if s, =1, (A.17)
7j=1 c,i

where the second equality follows from the property (A.11).

Finally, the numerator in (A.14), obtained by summing up (A.16) and (A.17), is given
by:

v .
B tas (it ) () exp (1 =) dcua) | 4]

= exp ((1 — ) e + (- 7)2%,1-)

A zZ,1
Y 1- 1 In (’ihlv’) ~ Heii 1/2 . )
X E pijAM} 1+(of —1)<I> ’ — (1= w. if s =1.
j=1

1/2
wc,z'



dividing this expression by (A.15) and taking the power 1/ (1 — ) gives the result:

1 —
Az = €xp (Me,z‘ + vac,z’)

In HM —He,i =
1+ (e~ 1) (u ~(1-w
AT

N .
pr . 1v,j (A18)
=1 . ln(n/\ll)])—uu
1+ (« )Y pi® 25
and we define
)‘121'
In( w3220 ) e
I+(@'-1)® <% —(1=7) @ﬁ/ﬁ)

N (w3224 ) —p,
1+ (o' = 1)K 30 py® (%

i=1

so that:

Az = €Xp <Mcz + —wc,> (Z p”)\iv }) ) (A.20)

B.1.2 Second utility-consumption ratio

Dividing by C; each side of the recursion

Vi {a-aa o (A21)

it follows that

Vi _ {(1 — 8§+ [M] 1_5/}11}) (A.22)

Ct Ct
or )
My = {(1 —0)+0 (ALQ)W}P% : (A.23)
and finally
Api = {(1 —6) +<5)\1“ }W L if s = (A.24)



B.2 Price-Dividend Ratio

Given the stochastic discount factor

Crar\ ¥ |7 v Laa < RVET/l ))
M =6 (1) 7 () (A2)
t t (Vit1 E [[aﬁ (HRt(V;H»l)) | Jt}
and the pricing equation
Pyt = E M1 (Py1 + Dyya) | 4], (A.26)

the price-dividend ratio is given by:

Dy

_1 1. I ( Vit )
Py o) <Ct+1) v ( Vin ) v b \ KR (Ves1)
C R: (V; Vi
t t( t+1) E []a,ff (nRt(‘Jr/tlﬂ)) ‘ Jt}
" <Pd,t+1 +1) Dy iy |Jt}

—Els <Ct+1)_7 < Vit1/Crna )1}’_7 Tag <mz‘t/2\+/tl+1)>
#) ®ide) G

Piia ) Dy }
x [ —=——— +1 J,
< Dy D, [

Vit1 1_
_§E ]O"l (Mj/t(vtﬂ)) (AIUQ—H) w7
E o (it ) | 1

or

T l,—“/
§ E [Ia,l (,@Ri/;(s‘ttlﬂ)) (Ai\le> ' ()\1Td§t+1 + 1) exp (—yAci11 + Adyyq) | Jt}
AMaGe =19

Vit
E |:]Oc,,‘€ (HRt(‘t'tJrl)) | Jti|

(A.27)

Notice that —yAciq1 + Adyy 1 = ,uCTdQ + (w;g) 1/2 €cdt+1 Where the new defined vectors are

Hed = —V e + Hd and Wed = We +Wq — 2ryp © wé/2 © wtll/2'

As for the numerator in (A.14), the numerator in (A.27) can also be decomposed into



two terms. The first term is:

)‘IUCH—I i_’y T
L (MaCer1 + 1) exp (—7Ac1 + Adyyr) | J,

)‘Izgt
MG\
=F [exp (—7Act+1 + Adt+1> | Jt] E (Aldct-l-l + 1) ‘ Jt

)\Ith
1-1/% T
- 1 - <>‘1v ® (Mg + e)) P,
= eXp (,ucdé-t + iwcdct) T
(TG

! o 1 - 1-1/% . )
— (}\1 ) exp (:ucd,i + §wcd7’i> pij)\lw (AldJ —+ 1) if s =1, (A.28)

) s

since ;41 and —yAc,41 + Ad,4; are independent, given the information J;, and 1 = e' (4.
The second term is up to the multiplicative constant (! — 1), given by:

A, Gt v T
( )\zil— Ct ) ()\ldgt'i‘l + ]_) exp (_'VACt—i-l + Adt+1)
1z
In (KJ—)‘LQ ) — )¢
x1|e < Ml e | J,
C7t+1 (wTCt)l/2 t
MG\ !
=FE ( ;\T tgl) (AleCtH +1) exp (MchCt + iwchCt)
125t

)\T
(I) In (HA1TU125;> — 1o G
(WCTCt)l/2

R L
- )\1271' €XP \ Hed,i 2wcd,z

Az )

- 1-1/1 n (Km) fle,i 1/2 1/2 . .

X Zpij)\lw (Aa; +1)@ T2 — (piwd,i — YW ) if s, =1,
j=1 Wei

X

~ ((076) (i) =7 (@) ) | 1

(A.29)
where we first condition on ({(;, 7 € Z}, J;) by law of iterated expectations and use (A.11)

for the expectation conditional on ({(,,7 € Z}, J;). The denominator in (A.27) is already
computed and given by (A.15). Summing up (A.28) and (A.29) and dividing by (A.15),

10



(A.27) becomes:

1\ 1
Mdi = 0 <)\127i) exp <:ucd,i + §wcd,i)

(Rt )y
L+ (a1 -1 (@ (2 = i)
X

N .
. sz‘j N 1 < >‘1zz‘> lv,j (A1aj +1)
i— n| Ky | —fc,i
J=t 1+ (Oé_l — 1) k1= Z pmq) <m+>
jzl c,t
(A.30)
and we set
In HAl—z’i. —He,i
I1+(at=1)d <—< Al”{j} - (piw;,/f - vwi/iz)>
p;.kj’.* = Dij N 1 ( Alzi) (A31)
n( k= ) —pei
1+ (Oé_l — 1) K=Y Z pZ](I) (Alvl—J/Q>
j=1 Weyi
so that:
1\ -1/ 1 N e
AMdi = 0 (Au,i) exp (,ucdﬂ- + §wcd,i) ;pﬁ)\lm (Mg +1). (A.32)
We also have the following Lemma.
Lemma 1: The solution to the linear system:
N
U; = vinijwj (1 + Uj) Vi = 1, oy N
j=1
with unknowns u;, © = 1,.., N is given by:
w = v;w' P [Id — Dva]_1 e; (A.33)

where e; is the N X 1 wvector of zeroes but one at the position i, u = (ul,..,uN)T, v =
(1, ..y UN)T, w = (wy, .., wN)T and D, is the diagonal matriz D, = Diag (viwy, .., vywy).

We use Lemma 1 to write the solution to the linear system (A.32) as:

1\ Wod. 1\ T Weg\\ ~1
Mgs = 0 (A ) exp (ucd,,- + 2) (Af’v ) P (Jd _5A™ (ucd +5 )) e,
1z,

where
1 1
Mg\ 77 Aoy \ ¥ 77
A* (u) = Diag ( ! ’1) exp (u1) ..., ( ! ’N) exp (uy) | P**
>\lz,1 >\12,N

P**T — [p;kj*}

and

1<ij<N*

11



C Proofs of Formulas for Reported Statistics
We have the following Lemma.
Lemma 2: For any vectors a, b € RY and for any integer h, h > 0, we have

h

Z a'Gijr) (b7 Grs)

—h(a®a) E[G]PT(bob) —h? (a E[¢¢] PT) (A.34)

+2ih jH 1 E[GGTPT (bo (P2 (ae (PT1)))).

Proof of Lemma 2. Define the random variable u; as u; = (aTQ_l) (bTQ). We have

h h
Z Ct+g 1 b Ct+j) =Var Z Ut+j]
7j=1 Jj=1
. (A.35)
= hVar [uy] + 2 Z (h—7+1)Cov (upy1, Ury) -
j=2

We first compute Var [u;]. We have,

Elw)=a"E[G¢]b=a"E[GE[¢(L | G]lb=a"E[GG PTb=a"E[( ] PO

(A.36)
In addition,
= (CLTQ)Q (bTCtH)Q = ((a ©a)’ Ct) <(b ©b)’ Ct+1) -
Hence, the same calculations done in the proof of (A.36) yields to
Eluj]=(@oa) B[ | PT(0eD). (A.37)
By combining (A.36) and (A.37), one gets
Var[u] = (a®a)  E[¢¢T ] PT(bob) — (a"E [G¢T] PTh)”. (A.38)

We now compute Cov (ut41, uetj). For j > 2, we have

E[ugiupg ] = [( TCt) (bTCtJrl) ( Ct-‘r] 1) (b Ct-i—])]

b Gt ) (aTCryj1) (b EGij | Gaj- 1])}
Ct+1) (GTCH] 1)

e !

1
(0" PGij1)]
1 b

—E[(a"6) (
=B [(a"¢) (b
= E[(a"G) (07Gs1) ((a© (PT) "Gy )|

12



where the last equality follows from (A.10). Hence,

Elucau) = B [(a76) (07¢) (00 (PT0) " ElGayr | Gl
= EB[(a"G) (07G) (@ (PT) " P3G )]
_E :(aTQ) (5@ (P (ao (pr)))Tcm)} ,
where again the last equality follows from (A.10). Therefore,
Elunu) =a E[6¢h] (b0 (P73 (o (PT1))))
—a" B[0P (bo ((P72) (o (PT1)))).
By combining (A.36) and (A.39), one gets

Cov (s, ues) = a B [0GT] PT (0@ (P73) (@ (PT)))) = (a B [a¢]] PTh)°.
(A.40)
By plugging (A.38) and (A.40) into (A.35), one gets (A.34). We also have the following
Lemma.
Lemma 3: For any vectors a, b, ¢, d € RN and for any integer h, h > 0, we have

h h
Cov (Z Ct+g 1 b Ct+g 72 Ctﬂ 1 d Ctﬂ'))

Jj=1 Jj=1

(A.39)

i E[GG P T(bod) =k (a"E GG PTY) (c"E[G¢ ] PTd)
- i E ¢ P ( ((Z PZ) cO PTd))) )
3

s (oo (8] eovrm))

(A.41)

Proof of Lemma 3. Similar techniques and hints are used as for the proof of Lemma 2.
Lemma 2 is also a particular case of Lemma 3.

C.1 Expected Values
We have

R — Piti1+ Dy Dy Dipy <Pd,t+1
1 =

Py, Py Dy \ Diyy
= ()‘;—dgt) €Xp (Adt+1) ()‘;,rdCt-i-l) )

+ 1) = ()\;—dgt) exp (Adt+1) ()\;rdCt—l—l + 1)

13



where the last equality holds given that e (,;; = 1. Given the information .J;, the processes
(i41 and Ady, are independent. Therefore,

E[Rii1 | Ji) = E [(AgCt) exp (Adys1) (A3qGesr) | Ji]
= (A3a€t) Elexp (Adpsr) | B E [(Agaiar) | ]
= ()\;dCt) eXp (H;Ct + wdTCt/Q) )\;—),rdE [Ct+1 | Jt]
= (A2aCr) exD (114 Gt + wg Gi/2) Mgy PGy
=y G

Consequently, Vj > 2
E Ry | J] =g BlGjr | 1] =g P76
Finally,

h

h
> Rl Jt] =4 (Z Pj_l) Gt = Vpals-
j=1

J=1

E [Rt+1:t+h | Jt] =k

Aggregate consumption and dividend growth rates over h periods are defined by:

h h
Aciir44hn = Z ACt—l—j and Adyq1:44n = Z Adt—l—j-

Jj=1 Jj=1

Similar arguments and techniques can be used to prove that the expected values of these
multi-period growth rates are given by:

E[Aciirein | i) = 115G and E [Adyiiasn | Ji] = panée

where

h T h L
Heh = (Z Pj_l) pe and gy, = (Z Pj_l) Hd-

j=1 j=1

C.2 Covariances

We also have

D
Cov (Rt+1:t+h> Ft) = Cov (E [Rt—i-l:t-i-h | Jt] ) )\;—dgt) =Cov (,lvb}—zr,dgta )\szCt)
t
= w;dCOU (Ctv Ct—r)‘2d) = %Idvm" [Ce] Aaa-

Similar arguments and techniques are used to prove that covariances of growth rates
with the dividend-price ratio are given by:

D

Cov <Act+1;t+h, Ft) = ,ucThVar [Ct] )\gd (A42)
t

Cov | Adyi1.44n, 5 )= tanVar [G] Aaa. (A.43)
1

14



C.3 Variances

Observe that conditional on the information set {(,, 7 € Z}, the variables R, j =1, ..., h,
are independent. Therefore,

Var [Ryvien]) = Var [E Ry | {67 € ZY| + E[Var [Ryvagn | {G, 7 € ZY]]

h
+E Z Var Ry | {¢r 1 € Z}]

J=1

h
=Var Z B[Ry | {G, T € Z}]

Jj=1

(A.44)

Given that Rij = (AyCjo1) (MgCits) exp (Adyy;), we have

)\2d§t+y 1) ()\i—’)rdct-l-j) exp (MCICHJ—I + WdTCtH—l/Q) (A.45)

)

ERyj [{¢,T7 €LY = ( 2d<t+J 1) ()‘i—’)rdCt-i'j) E lexp (Adiyj) [ {¢r 7 € ZY]

= (
( ldCH'J 1) ()‘?Tdctﬂ‘)’

and

Var Ry [ {Gm € ZY) = (MuGivi1)” (Maers)” Var [exp (Adiy) | {G-, 7 € Z)]
( A2d © Aaq) Ct+j—1) (()\Sd ® Aaa) " Ct+j)
(
= (6

exp (2/~Ld Gaj—1 + 2% Grtj— 1) exp (2M}Ct+j—1 + WdTCtJrj—l))
2dCt+J 1) ( 3dCt+j) :

(A.46)
Consequently,
h
ZVC”’ [Rivj | {Grom € Z}] Z 2dCt+] 1) ( 3d<t+])]
B
= 0, Z [Ct+j—1§t1j] 034
j=1
h
= QQTCzZ (i1 BIGN | Terj—1]] Osa
j=1
h
= 0, Z [Ct-i—j—lC;-j_lPT} O34,
j=1
ie.,
h
E | Var Ry | {¢.7 € ZY]| = h03,E [(¢] PTosa. (A.47)

J=1
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In addition, we have

h

> E[Riy | {2}

=1

h

Z ldCt-i-] 1 3dCt+j) :

J=1

Var ar

Therefore, by using (A.34), one gets

Var

h
> E[Ri | {2}
j=1
h(f1q © eldf E[G¢T] PT (Msa © Aaa) — B2 (01,E [G¢T] PThaa)”
+ 22 —j+D0LE[C PT (Agd ® ((PH)T (610 ® (PTAgd)))) .
(A.48)

Finally, by combining (A.44) with (A.47) and (A.48), one gets the variance of aggregate
returns:

Var [Rt-i—l:t—i-h] = heszE [CtCtT} PT93d-

+ B (010 © 010)" E[GGT] PT (Maa © Asa) — B2 (0,E [G6T] PTAsa)”
h

+23 (h—j+1)0,E 6] PT <)\3d ® ((PH)T (610 © (PTAM))» :
=2
(A.49)
One has:
h h
Var [Ryp1.040n) = Var Z 2fCt+] 1)| = Var Z 2fCt+] 1 Ct+j)]
j=1 7j=1

which can be computed directly from (A.34):
Var [Rf,t+1:t+h] =h (>\2f © >‘2f)T E [Ct(ﬂ Pt (e®e) — h? (A;—fE [CtCtT] PT€)2
h
+23 " (h= i+ DALE GG PT (eo (P2) (up 0 (PTe)))).

Jj=2

(A.50)

Also, one has:

Cov (Rt+1:t+haRf,t+1:t+h> = Cov (E [Ripra4n | {¢ 7 € ZY], th+1t+h)

h
=Cov Z 1dCt+g 1 >‘3d§t+g az Asztﬂ 1 Ct+j))
7=1

J=1

16



which can be computed directly from (A.41):

Cov (Rt+1:t+h7 Rf,t+1:t+h)

=3 G ) BT PT 0w ) = 12 (0L [667] PThsa) (2 [66T) PTe)
+) 6LE (G PT (Agd@ ((ZP) (Ao ® (P e))))

+;>\2TfE G¢' ] ( ((i )T 010 (P Agd)))).

Observe that the variance of aggregate excess returns is given by:

(A.51)

Var [Rf,14.0] = Var [Reciasn) — 2C0v (Regviein, Rpgeraen) + Var [Ry i)

which the formula is obtained by combining (A.49), (A.50) and (A.51).
Remark that:

Var [Cgr:4n] = Var [Cugn—1] = Var

h
> Qﬂ_l]
j=1
h
=hVar[¢]+2)  (h—j+1)Cov(C, i)
j=2

h
= hVar[¢] + 22 (h =3 +1)Cov (&, E [Ggj—1 | i)

=2
h
= hVar (] + QZ (h—3j+1)Cov (&, P7'G)
=2
h
— <h[ +2 Z (h—j+1) Pj_l> Var[G]. (A.52)
=2

In addition, variances of growth rates are also given by:

Var [Aciiien] = Var [E[Aciiin | {67 € ZY] + E [Var [Aciiagn | {G, T € Z}]]

= Var [/le—gt:t—i—h—l} + B [WCTCt:tJrh—l]

= plVar [Gurn] pe + ho/TT (A.53)
Var [Adyyreen]) = Var [E [Adyrion | 16,7 € 2]+ E[Var [Adyran | {G, 7 € Z}]]

= Var [,u;ll—gt:t—i-h—l} +FE [w;—Ct:t-i-h—l]
= pig Var [Crasn] pa + hw, 11 (A.54)

where Var [(uevn-1] = Var [G1.444) given by (A.52) and since E [(iyn-1] = hE [(;] = hlL.
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C.4 Predictability of Volatility

To assess the predictive power of equity return volatility by the dividend price ratio, we
first compute the population regression

Riyy = ap +brBy + Up 1 (A.55)

where R;,; denotes the gross return on equity:

Rip1 = (Agt) exp (M;Q + (WdTCt)l/2 5d,t+1> (MdaGie) - (A.56)

It follows that

CO’U (Rt+1, Rt)
Var [Ry]

and arR = E [Rt+1] (1 - bR) .
(A.57)

Urty1 = Rip1 — brRy — ar where bp =

We measure volatility as a moving sum of these squared residuals and consider the predictive
regression

D Ukey = @ (k) +b(h) -+t (). (A.58)

Notice that

Uiy = Ri +05RY . — 2brRy iR j 1 — 2ar Ry 4 2apbr Ry + afy, j > 1.
(A.59)

Since the slope and the R? of this regression are given by

2
h h
Cov <Z U}%’HJ,Dt/Pt) <COU <Z U%’Hj,Dt/B))
=1 =1
b(h) = d and R2(h) = d (A.60)

h h
Zl U }2%,t+j Zl UI2%,t+j
j:

J]=

Var Var Var[D;/P]

and given that

i D i D
t t
Cov (Z Uk iri E) = Z Cov (UELHJ», E) and (A.61)
j=1 j=1
h
r ZU}%,H—]‘

h—1
=hVar [Up, ) +2) (h=35)Cov (Upy 1. Uk ypryy) . (A62)
j=1

then, to be able to compute analytically the slope and the R? of this predictive regres-
sion, we need to derive closed-form expressions for E [Riy1], Var[Ryi1], Cov (Ryi1, Ry),
Var [U} 4], Cov (UR,, ;. Dy/F) and Cov (U411, Up i i1y;) for j > 1.
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To compute these expressions, observe that:

Var [Ugtﬂ}
= (1+b}) Var [RY 1] +4b3Var [Re R + (a3, + 4akby,) Var Ry
+ 20%Cov (R}, |, R}) — 4bgCov (R}, y, Riy1 Ry) + 4arbrCov (R}, |, R;)
— 4b%Cov (R}, Ryy1 Ry) — 4agby,Cov (R}, Ret1) + (4agb}, — 4ag) Cov (R, |, Ris1)
+ SCLRbRCOU (Rt—l—lRt; Rt+1) — 8@3[9%000 (Rt+1Rt, Rt) — 8@%()3001] (Rt+1, Rt)

Cov (U12%,t+17 U}2%,t+1+j)
= (1+b%) Cov (R, Ry ;) + 4b5Cov (Ria Ry, Ry Risj)
+ (4aF, + 4aRb,) Cov (Riyr, Ripayy) + b5 [Cov (R}, RY ;) + Cov (R}, R}, ;)]
— 2bg [Cov (thﬂ, Rt+1+th+j) + Cov (Rt+1Rt, R,?HH)]
+ 2agrbp [Cov (R}, Reyj) + Cov (R, Rf+1+j)]
— 2b}, [Cov (R}, Ris14jRivj) + Cov (Risi Ry, R ) |
— QCL}gbfz [C’ov (Rf, Rt+1+j) + Cov (Rt+1, Rfﬂ»)]
+ (2agrb}, — 2ag) [Cov (R}, Riy;) + Cov (Ry, Rfﬂ-)]
+ 4dagbr [Cov (Rip1 Ry, Riv145) + Cov (Rt Rip1+5Ritj)]
— dagb% [Cov (Ryy1 Ry, Ry ) + Cov (R, Riy14jRevy)]
— 4a%bg [Cov (Riyr, Rivy) + Cov (Ry, Riyi4y)]

D D D D
Cov <U,2%7t+j, Ff) =Cov <Rf+j, F:) + b5,Cov <R§+j_1, Ftt) — 2bgrCov <Rt+]—Rt+j_1, Ff)

D D
— 2arCov (Rt+j, Ft) + 2arbrCov (Rt+j—1> Ft)
b f

We are able to get all the terms in Var [U},,,] and in Cov (UR 44y, U 4y1sy) > > 1if
we can compute Cov (R?HR;”, Rg+1+ij+j) , j > 1 for given nonnegative integers n, m, q
and p. We have:

Cov (R?+1R?’Rg+l+ij+j) =k [RTR?HR?ﬂRgﬂﬂ] —EB [RTR?H} L [Rf+jRg+1+j] :

Also observe that we can compute Cov (Ry, R, R}, | Ry +j) , j > 1 for given nonneg-

ative integers n, m, ¢ and p if we can compute E [R;”RfHRfHRfHH} , j > 1 for given
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nonnegative integers n, m, ¢ and p. We have

B[R] Ry\ Ry R ]

= E[E[RPR! RV R | T € 2]
=E[E[R" | (T € ZE R}, | 7 € Z)

E[R}; | G m €L B[R], |G 7 €Z]]
E [(86nG-1) (0nnGe) (BrioGesr) (B Cerim1) (BpqCees) (BuoCesn)]

= 05, B (GG PT (0 (P (B0 @ ((P7) (00r © (P (0@ (PT0))))))))

where the second equality comes from the fact that returns are independent conditionally
to the Markov chain, and where

l2

We can also get all the terms in

COU (U}227t+j7Dt/Pt) y j Z 1

if we can compute

Cov (R;erR;’}rj_l,Dt/Pt) for 7>1, n>0 and m > 0.
We have

D
Cov (R;erR;’}rj_l, —t) =Cov

B [R?—i-jR?}rj—l | CT?T € Z} 7)‘;—dct)

(E
= Cov (B[R, | G 7 € Z) B[Ry | G 7 € 2] A,G)
= Cov ((H(TmCt+j—2) (ef—lz;nct-l-j—l) (%CM) 7)‘2Td<t)
O E (GG ] P (Bn © Aaa © (PT6u0))
_ — (O E [GCT] PT (B © (PT000))) (\LE[G]) it j=1

AVar (6] (P72)T (Bom © (PT (Bn © (PT0,0)))) if 5 > 1.

Similar formulas can be obtained for consumption growth and dividend growth volatil-
ities using the following table of parameter substitution:

Returns Consumption Growth Dividend Growth

A3d e e
Ao e e
Ha He Ha
Wd We Wd
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D GDA Vs. KP Certainty Equivalents

We have proven that in the long-run risk and recursive utility framework, the GDA cer-
tainty equivalent solves both asset pricing puzzles, high predictability of long-horizon excess
returns by the dividend-price ratio and the low (or say no) predictability of long-horizon
growth rates by the dividend-price ratio, whereas the KP certainty equivalent only solves
asset pricing puzzles and produces opposite results in predictability regressions (low or no
predictability of returns and high predictability of growth rates by the dividend-price ra-
tio). One might ask how risk-averse is the GDA representative investor compared to the
KP one? To answer this question, we compare the indifference curves of the GDA certainty
equivalent with (v = 2.5, v = 0.33,x = 0.985) to that of the KP certainty equivalent with
~ = 10 considered by Bansal and Yaron (2004) and Bansal, Kiku and Yaron (2006).

Let Z be an atemporal lottery that put the probability p on the outcome z and 1 —p on
the outcome y. Such a lottery is then characterized by a three-dimensional vector (x,y, p)T
where p = Prob(x). For a given number pu, let focus our attention on all the atemporal
lotteries Z such that R (Z) = p, that is the indifference set indexed by p. This set is a
surface S (z,y,p) = 0 in the space (x,y,p), which for a given 3° leads to an indifference
curve p = f(x,4°) in the plane (z,p), and for a given p° leads to an indifference curve
y = g (x,p°) in the plane (z,y).

With GDA preferences, the indifference set indexed by p in the space (x,y,p) is the
surface characterized by the implicit equation:?

Ia,n (i) Ml—’y - [a,l (i) yl_ﬁf - P { |:[a,1 (i) xl—'y - [a,l (i) yl_ﬁf:|
KU R R R
() )
KU R

Panels (a) and (b) Figure 1 shows the well-known result that, the more risk-averse is an
investor, the more pronounced is the curvature of the indifference curve. In Panel (a), the
indifference curve in the plane (x, p) of our GDA investor with (v = 2.5, = 0.33, k = 0.985)
lies in between the indifference curves of KP investors with risk aversions v = 3 and
v = 5 that are less curved than the indifference curve of a KP investor with v = 10.
Panel (b), shows that the indifference curve in the plane (x,y) of our GDA investor is less
curved in the tails compared to that of the KP investor with v = 10 and both almost
have the same curvature elsewhere. Based on that observation, we argue that our chosen
preference parameters for the GDA investor are reasonable if one admits that v = 10 is
a reasonable upper bound for the risk aversion parameter for KP preferences (Mehra and
Prescott (1985)).

3The probability p of the outcome z is then given by:

Y 11—y _ Y 1—
e () s ()0
PR X B O e e ) P

and this is the explicit equation of an indifference curve in the plane (z,y) for a given y.
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Figure 1: Indifference Curves for GDA Preferences

Indifference curves over two outcomes x and y with the fixed probability p = Prob(z) =
1/2.

160

" m\=2.5, 0=0.3, k=0.989
150 ; mm |y:0’ G:O.S’ K=1 4
I " IIHI\V:5’a:1 |
140 \l\lV:lO’a:]_
1307, *
>\ .

120¢

110r

1001

N NN 48 BN AR BR AR
1l

90 | 1
90 100 110 120 130 140 150 160
X

22



Table 1: Small Sample Fit of the Long-Run Risk Markov-Switching Model.
In the table, we report and compare moments of simulated annualized consumption and
dividend growth rates. Data are simulated from the original LRR model as well as from its
Markov-Switching match. Reported statistics are based on 10, 000 simulated samples with
78 x 12 monthly observations that match the length of the actual data. The entries represent
mean, median, 5th, 10th, 90th and 95th percentiles of the monte-carlo distributions of the
corresponding statistics.

mean 5% 10%  50% 90%  95%

E[A(] LRR 180 082 1.07 1.80 255 279
MS 1.80 0.88 1.13 186 236 248

o [Ad] LRR 325 183 207 318 451 487
MS 263 151 1.62 224 450 4.82

AR1 (Ac) LRR 016 -0.06 -0.01 0.16 033 0.38
MS 0.22 -0.12 -0.06 0.21 0.51 0.57

E[Ad] LRR 177 -234 -132 174 489 5.86
MS 177 -176 -080 188 413 5.01

o [Ad] LRR 1894 10.83 12.09 18.53 26.26 28.29
MS 1491 9.15 9.52 11.08 28.14 30.19

AR1 (Ad) LRR 002 -0.18 -0.14 0.02 0.18 0.23
MS 0.04 -0.17 -0.13 0.04 0.22 0.27

Corr (Ac,Ad) LRR 044 026 0.30 044 057 0.60
MS 046 028 032 047 0.60 0.64

23



