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A Reproducing the Bansal and Yaron (2004) Model with a Markov-Switching
Model

We start with the LRR model of BY for the endowment1:

∆ct+1 = xt + σtǫc,t+1

∆dt+1 = (1 − φd)µx + φdxt + νdσtǫd,t+1

xt+1 = (1 − φx)µx + φxxt + νxσtǫx,t+1

σ2
t+1 = (1 − φσ)µσ + φσσ

2
t + νσǫσ,t+1

(A.1)
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The main features of this multivariate process are:

1. The expected means of the consumption and dividend growth rates are a linear func-

tion of the same autoregressive process of order one denoted xt;

2. The conditional variances of the consumption and dividend growth rates are a linear

function of the same autoregressive process of order one denoted σ2
t ;

3. The variables xt+1 and σ2
t+1 are independent conditionally to past information;

4. The innovations of the consumption and dividend growth rates are correlated condi-

tionally to past information.

Our goal here is to characterize a Markov Switching (MS) model:

∆ct+1 = µc (st) + (ωc (st))
1/2 εc,t+1

∆dt+1 = µd (st) + (ωd (st))
1/2 εd,t+1,

(A.2)

where εc,t+1 and εd,t+1 follow a bivariate standard normal process with mean zero and

correlation ρ1. The MS model (A.2) will have the same features as the original endoment

model (A.1).

For the MS model, the first characteristic of the Bansal and Yaron (2004) model implies

that one has to assume that the expected means of the consumption and dividend growth

rates are a linear function of the same Markov chain with two states given that a two-state

Markov chain is an AR(1) process. Likewise, the second one implies that the conditional

variances of the consumption and dividend growth rates are a linear function of the same

1Note that in the original modelof BY the parameter ρ1was zero.
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two-state Markov chain. According to the third characteristic, the two Markov chains

should be independent. Consequently, we should assume that the Markov chain st has 4

states, two states for the conditional mean and two states for the conditional variance, and

that the transition matrix P is restricted such as the conditional mean and the conditional

variance are independent. Finally, the last characteristic implies that the correlation vector

in the four states is equal to (ρ1, ρ1, ρ1, ρ1)
⊤.

We would like to match an AR(1) process, say zt, like xt or σ2
t by a two-state Markov

chain, say z∗t . We assume that z∗t = a+ byt where yt is a two-state Markov chain that takes

the values 0 (first state) and 1 (second state), and where the transition matrix Py of yt is

given by:

P⊤
y =

(

py,11 1 − py,11
1 − py,22 py,22

)

.

The (unconditional) stationary distribution of yt is

πy,1 = Prob (yt = 0) =
1 − py,22

2 − py,11 − py,22
, πy,2 = Prob (y = 1) =

1 − py,11
2 − py,11 − py,22

. (A.3)

Without loss of generality, we assume that b > 0, i.e. the second state corresponds to the

highest value of z∗t .

Our goal is to find the vector θ = (py,11, py,22, a, b)
⊤ so that moments of the two-state

Markov chain z∗t are equal to moments of the AR(1) process zt. The first moments we

want to match are the mean, the variance and the first-order autocorrelation of the AR(1)

process zt denoted µz, σ
2
z and φz respectively. Given that the dimension of the vector θ

is four, another restriction is needed. For instance, Mehra and Prescott (1985) assumed

py,11 = py,22. In contrast, we will focus on matching the kurtosis of the process zt denoted

kz. We will show below that matching the mean, the variance, the kurtosis and the first-

order autocorrelation does not fully identify the parameters. However, knowing the sign of

the skewness of zt (denotes sz) and the four other moments will fully identify the vector θ.

The moments of the AR(1) process zt are related to those of the two-state Markov chain

yt as follows:

µz = a + bµy = a+ bπy,2

σ2
z = b2σ2

y = b2πy,1πy,2

φz = ρy = py,11 + py,22 − 1

kz = ky =
π2
y,1

πy,2
+
π2
y,2

πy,1

sz = sy =
πy,1 − πy,2√
πy,1πy,2

(A.4)
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Equation (A.4) combined with (A.3) characterizes the moments of the AR(1) process in

terms of the vector θ. As pointed out above, Mehra and Prescott (1985) assumed that

py,11 = py,22, which implies sz = 0 and kz = 1. The empirical evidence reported in Cecchetti,

Lam and Mark (1990) suggests that the kurtosis of consumption growth is higher than one

and that its skewness is negative.2 We will now invert the characterization (A.4), that is,

we will determine the vector θ in terms of the moments of zt.

The vector θ of parameters of the two-state Markov chain that matches the AR(1)

process zt is given by:

py,11 =
1 + φz

2
− 1 − φz

2

√

kz − 1

kz + 3
, py,22 =

1 + φz
2

+
1 − φz

2

√

kz − 1

kz + 3
if sz ≤ 0,

py,11 =
1 + φz

2
+

1 − φz
2

√

kz − 1

kz + 3
, py,22 =

1 + φz
2

− 1 − φz
2

√

kz − 1

kz + 3
if sz > 0,

b =
σz√
πy,1πy,2

, a = µz − bπy,2

(A.5)

and πy,1 and πy,2 are connected to py,11 and py,22 through (A.3).

The mean µx and the first autocorrelation φx of xt, and the mean µσ and the first

autocorrelation φσ of σ2
t are given in (A.1). The variance, the skewness and the kurtosis of

xt and σ2
t are given by:

σ2
x =

ν2
xµσ

1 − φ2
x

, sx = 0, kx = 3
(1 − φ2

x)
2

1 − φ4
x

(

1 + 2
φ2
x

1 − φ2
x

φσ
µσ

+
ν2
σ

µσ (1 − φ2
σ)

)

σ2
σ =

ν2
σ

1 − φ2
σ

, sσ = 0, kσ = 3.

(A.6)

Observe that the skewness of the conditional mean of consumption growth equals zero

in Bansal and Yaron (2004) as in Mehra and Prescott (1985). In contrast, in order to

generate a kurtosis higher than one, the Markov switching needs some skewness. Given

that the skewness of consumption growth is empirically negative, we make this identification

assumption, that is, we use the first line in (A.5) to identify the transition probabilities

px,11 and px,22.

Likewise, the skewness of the conditional variance is zero in Bansal and Yaron (2004),

somewhat unrealistic given that the variance is a positive random variable. A popular

variance model is the Heston (1993) model where the stationary distribution of the variance

process is a Gamma distribution. Given that the skewness of a Gamma distribution is

positive, we make the same assumption on σ2
t and therefore, the second line in (A.5) to

identify the transition probabilities pσ,11 and pσ,22.

2Strictly speaking, the process xt here is the expected mean of the consumption growth and not the
growth. Therefore, the skewness and kurtosis of these two processes are different but connected.
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We have now the two independent Markov chains that generate the expected mean and

variance of consumption growth. Putting together these two processes leads to a four-state

Markov chain (low mean and low variance, low mean and high variance, high mean and

low variance, high mean and high variance) whose transition probability matrix is given

by:

P⊤ =









px,11pσ,11 px,11pσ,12 px,12pσ,11 px,12pσ,12
px,11pσ,21 px,11pσ,22 px,12pσ,21 px,12pσ,22
px,21pσ,11 px,21pσ,12 px,22pσ,11 px,11pσ,12
px,21pσ,21 px,21pσ,22 px,22pσ,21 px,22pσ,22









(A.7)

where p·,12 = 1 − p·,11 and p·,21 = 1 − p·,22. The vectors µc, ωc, µd, and ωd defined in (A.2)

are given by:
µc = (ax, ax, ax + bx, ax + bx)

⊤

ωc = (aσ, aσ + bσ, aσ, aσ + bσ)
⊤

µd = (1 − φd)µxe+ φdµc
ωd = ν2

dωc.

(A.8)

where e = (1, 1, 1, 1)⊤.

B Proofs of Formulas for Asset Prices

The formulas are proved using particular properties of Markov switching processes. It is

well kown that (see, e.g., Hamilton (1994), page 679):

∀h, E [ζt+h | Jt] = P hζt, and P hΠ = Π. (A.9)

Also, for any vectors a, b ∈ R
N , we have:

(

a⊤ζt
) (

b⊤ζt
)

= (a⊙ b)⊤ ζt, (A.10)

In addition, we will need the following Lemma.
Lemma 0: Given two standard normal random variables ǫ1 and ǫ2 with correlation ρ, and

three real numbers x1, σ1 and σ2, one has:

E [exp (σ1ǫ1 + σ2ǫ2)1 (ǫ1 < x1)] = exp

(

1

2

(

σ2
1 + 2ρσ1σ2 + σ2

2

)

)

Φ (x1 − (σ1 + ρσ2))

(A.11)

where Φ denotes the cumulative distribution function of the standard normal, and 1 (·)
denotes the indicator function.

4



B.1 Utility-Consumption Ratios

B.1.1 First utility-consumption ratio

Recall that the GDA certainty equivalent may be written:

Rt (Vt+1) =



E





Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
]V 1−γ

t+1 | Jt









1

1−γ

(A.12)

where

Iα,y (x) = 1 +

(

1

α
− 1

)

y1−γ1(x < 1).

Dividing each side by Ct, it follows from (A.12) that

Rt (Vt+1)

Ct
=



E





Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
]

(

Vt+1

Ct+1

)1−γ (
Ct+1

Ct

)1−γ

| Jt









1

1−γ

(A.13)

or

λ⊤1zζt =



E





Iα,1

(

Vt+1

κRt(Vt+1)

)

(

λ⊤1vζt+1

)1−γ
exp ((1 − γ)∆ct+1)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
] | Jt









1

1−γ

(A.14)

Notice that one has:

Vt+1

κRt (Vt+1)
=

1

κ

Vt+1

Ct+1

Ct
Rt (Vt+1)

Ct+1

Ct
=

1

κ

λ⊤1vζt+1

λ⊤1zζt
exp (∆ct+1)

and that

Vt+1

κRt (Vt+1)
< 1 ⇔ εc,t+1 <

ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2
.

Then, the denominator in (A.14) is given by:

E

[

Iα,κ

(

Vt+1

κRt (Vt+1)

)

| Jt
]

= 1 +
(

α−1 − 1
)

κ1−γE



1



εc,t+1 <
ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt
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where we have

E



1



εc,t+1 <
ln
(

κ
λ⊤1zζt
λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt





= E



E



1



εc,t+1 <
ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | {ζτ , τ ∈ Z}, Jt



 | Jt





= E



Φ





ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt



 = E



Φ





ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | st





=
N
∑

j=1

pst,jΦ





ln
(

κ
λ1z,st

λ1v,j

)

− µc,st

ω
1/2
c,st



 =
N
∑

j=1

pijΦ





ln
(

κ
λ1z,i

λ1v,j

)

− µc,i

ω
1/2
c,i



 if st = i.

Finally, the denominator in (A.14) is given by:

E

[

Iα,κ

(

Vt+1

κRt (Vt+1)

)

| Jt
]

= 1 +
(

α−1 − 1
)

κ1−γ

N
∑

j=1

pijΦ





ln
(

κ
λ1z,i

λ1v,j

)

− µc,i

ω
1/2
c,i



 if st = i.

(A.15)

The numerator in (A.14) can be decomposed into two terms as follows:

E

[

Iα,1

(

Vt+1

κRt (Vt+1)

)

(

λ⊤1vζt+1

)1−γ
exp ((1 − γ)∆ct+1) | Jt

]

= E
[

(

λ⊤1vζt+1

)1−γ
exp ((1 − γ) ∆ct+1) | Jt

]

+
(

α−1 − 1
)

E





(

λ⊤1vζt+1

)1−γ
exp ((1 − γ)∆ct+1) 1



εc,t+1 <
ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt





The first term is given by:

E
[

(

λ⊤1vζt+1

)1−γ
exp ((1 − γ)∆ct+1) | Jt

]

= E [exp ((1 − γ) ∆ct+1) | Jt]E
[

(

λ⊤1vζt+1

)1−γ | Jt
]

= exp

(

(1 − γ)µ⊤
c ζt +

(1 − γ)2

2
ω⊤
c ζt

)

E
[

(

λ1−γ
1v

)⊤
ζt+1 | Jt

]

= exp

(

(1 − γ)µ⊤
c ζt +

(1 − γ)2

2
ω⊤
c ζt

)

(

λ1−γ
1v

)⊤
Pζt

= exp

(

(1 − γ)µc,i +
(1 − γ)2

2
ωc,i

)

N
∑

j=1

pijλ
1−γ
1v,j if st = i, (A.16)
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where the first equality follows from that the processes ζt+1 and ∆ct+1 are independent
conditional to the information Jt. In the second equality, we conveniently adopted the
notation aq = (aq1, ..., a

q
N)

⊤
for a ∈ R

N
+ and q ∈ R. The expectation in the second term is

given by:

E





(

λ⊤1vζt+1

)1−γ
exp ((1 − γ)∆ct+1) 1



εc,t+1 <
ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt





= E
[

(

λ⊤1vζt+1

)1−γ
E [exp ((1 − γ) ∆ct+1)

× 1



εc,t+1 <
ln
(

κ
λ⊤1zζt
λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | {ζτ , τ ∈ Z}, Jt



 | Jt





= E

[

(

λ⊤1vζt+1

)1−γ
exp

(

(1 − γ)µ⊤
c ζt +

(1 − γ)2

2
ω⊤
c ζt

)

× Φ





ln
(

κ
λ⊤1zζt
λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2
− (1 − γ)

(

ω⊤
c ζt
)1/2



 | Jt





= exp

(

(1 − γ)µ⊤
c ζt +

(1 − γ)2

2
ω⊤
c ζt

)

× E





(

λ⊤1vζt+1

)1−γ
Φ





ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2
− (1 − γ)

(

ω⊤
c ζt
)1/2



 | st





= exp

(

(1 − γ)µc,i +
(1 − γ)2

2
ωc,i

)

×
N
∑

j=1

pijλ
1−γ
1v,jΦ





ln
(

κ
λ1z,i

λ1v,j

)

− µc,i

ω
1/2
c,i

− (1 − γ)ω
1/2
c,i



 if st = i, (A.17)

where the second equality follows from the property (A.11).
Finally, the numerator in (A.14), obtained by summing up (A.16) and (A.17), is given

by:

E

[

Iα,1

(

Vt+1

κRt (Vt+1)

)

(

λ⊤1vζt+1

)1−γ
exp ((1 − γ) ∆ct+1) | Jt

]

= exp

(

(1 − γ)µc,i +
(1 − γ)2

2
ωc,i

)

×
N
∑

j=1

pijλ
1−γ
1v,j



1 +
(

α−1 − 1
)

Φ





ln
(

κ
λ1z,i

λ1v,j

)

− µc,i

ω
1/2
c,i

− (1 − γ)ω
1/2
c,i







 if st = i.
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dividing this expression by (A.15) and taking the power 1/ (1 − γ) gives the result:

λ1z,i = exp

(

µc,i +
1 − γ

2
ωc,i

)

×















N
∑

j=1

pij

1 + (α−1 − 1) Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

− (1 − γ)ω
1/2
c,i

)

1 + (α−1 − 1)κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
λ1−γ

1v,j















1

1−γ

(A.18)

and we define

p∗ij = pij

1 + (α−1 − 1)Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

− (1 − γ)ω
1/2
c,i

)

1 + (α−1 − 1) κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
(A.19)

so that:

λ1z,i = exp

(

µc,i +
1 − γ

2
ωc,i

)

(

N
∑

j=1

p∗ijλ
1−γ
1v,j

)
1

1−γ

. (A.20)

B.1.2 Second utility-consumption ratio

Dividing by Ct each side of the recursion

Vt =

{

(1 − δ)C
1− 1

ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

}
1

1− 1
ψ
, (A.21)

it follows that

Vt
Ct

=

{

(1 − δ) + δ

[Rt (Vt+1)

Ct

]1− 1

ψ

}
1

1− 1
ψ

(A.22)

or

λ⊤1vζt =
{

(1 − δ) + δ
(

λ⊤1zζt
)1− 1

ψ

}
1

1− 1
ψ , (A.23)

and finally

λ1v,i =

{

(1 − δ) + δλ
1− 1

ψ

1z,i

}
1

1− 1
ψ
, if st = i. (A.24)
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B.2 Price-Dividend Ratio

Given the stochastic discount factor

Mt,t+1 = δ

(

Ct+1

Ct

)− 1

ψ
(

Vt+1

Rt (Vt+1)

)
1

ψ
−γ Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
] (A.25)

and the pricing equation

Pd,t = E [Mt,t+1 (Pt+1 +Dt+1) | Jt] , (A.26)

the price-dividend ratio is given by:

Pd,t
Dt

= E



δ

(

Ct+1

Ct

)− 1

ψ
(

Vt+1

Rt (Vt+1)

)
1

ψ
−γ Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
]

×
(

Pd,t+1

Dt+1
+ 1

)

Dt+1

Dt
| Jt
]

= E



δ

(

Ct+1

Ct

)−γ (
Vt+1/Ct+1

Rt (Vt+1) /Ct

)
1

ψ
−γ Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
]

×
(

Pd,t+1

Dt+1
+ 1

)

Dt+1

Dt
| Jt
]

= δE





Iα,1

(

Vt+1

κRt(Vt+1)

)

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
]

(

λ⊤1vζt+1

λ⊤1zζt

)
1

ψ
−γ

×
(

Pd,t+1

Dt+1
+ 1

)

exp (−γ∆ct+1 + ∆dt+1) | Jt
]

or

λ⊤1dζt = δ

E

[

Iα,1

(

Vt+1

κRt(Vt+1)

)(

λ⊤
1vζt+1

λ⊤
1zζt

)
1

ψ
−γ
(

λ⊤1dζt+1 + 1
)

exp (−γ∆ct+1 + ∆dt+1) | Jt
]

E
[

Iα,κ

(

Vt+1

κRt(Vt+1)

)

| Jt
] .

(A.27)

Notice that −γ∆ct+1 + ∆dt+1 = µ⊤
cdζt +

(

ω⊤
cdζt
)1/2

εcd,t+1 where the new defined vectors are

µcd = −γµc + µd and ωcd = ωc + ωd − 2γρ⊙ ω
1/2
c ⊙ ω

1/2
d .

As for the numerator in (A.14), the numerator in (A.27) can also be decomposed into

9



two terms. The first term is:

E

[

(

λ⊤1vζt+1

λ⊤1zζt

)
1

ψ
−γ
(

λ⊤1dζt+1 + 1
)

exp (−γ∆ct+1 + ∆dt+1) | Jt
]

= E [exp (−γ∆ct+1 + ∆dt+1) | Jt]E
[

(

λ⊤1vζt+1

λ⊤1zζt

)
1

ψ
−γ
(

λ⊤1dζt+1 + 1
)

| Jt
]

= exp

(

µ⊤
cdζt +

1

2
ω⊤
cdζt

)

(

λ
1−1/ψ
1v ⊙ (λ1d + e)

)⊤

Pζt
(

λ
1−1/ψ
1z

)⊤

ζt

=

(

1

λ1z,i

)1−1/ψ

exp

(

µcd,i +
1

2
ωcd,i

) N
∑

j=1

pijλ
1−1/ψ
1v,j (λ1d,j + 1) if st = i, (A.28)

since ζt+1 and −γ∆ct+1 +∆dt+1 are independent, given the information Jt, and 1 = e⊤ζt+1.
The second term is up to the multiplicative constant (α−1 − 1), given by:

E

[

(

λ⊤1vζt+1

λ⊤1zζt

)
1

ψ
−γ
(

λ⊤1dζt+1 + 1
)

exp (−γ∆ct+1 + ∆dt+1)

× 1



εc,t+1 <
ln
(

κ
λ⊤1zζt
λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2



 | Jt





= E

[

(

λ⊤1vζt+1

λ⊤1zζt

)
1

ψ
−γ
(

λ⊤1dζt+1 + 1
)

exp

(

µ⊤
cdζt +

1

2
ω⊤
cdζt

)

× Φ





ln
(

κ
λ⊤
1zζt

λ⊤
1vζt+1

)

− µ⊤
c ζt

(ω⊤
c ζt)

1/2
−
(

(

ρ⊤ζt
) (

ω⊤
d ζt
)1/2 − γ

(

ω⊤
c ζt
)1/2
)



 | Jt





=

(

1

λ1z,i

)1−1/ψ

exp

(

µcd,i +
1

2
ωcd,i

)

×
N
∑

j=1

pijλ
1−1/ψ
1v,j (λ1d,j + 1)Φ





ln
(

κ
λ1z,i

λ1v,j

)

− µc,i

ω
1/2
c,i

−
(

ρiω
1/2
d,i − γω

1/2
c,i

)



 if st = i,

(A.29)

where we first condition on 〈{ζτ , τ ∈ Z}, Jt〉 by law of iterated expectations and use (A.11)
for the expectation conditional on 〈{ζτ , τ ∈ Z}, Jt〉. The denominator in (A.27) is already
computed and given by (A.15). Summing up (A.28) and (A.29) and dividing by (A.15),
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(A.27) becomes:

λ1d,i = δ

(

1

λ1z,i

)1−1/ψ

exp

(

µcd,i +
1

2
ωcd,i

)

×
N
∑

j=1

pij

1 + (α−1 − 1)Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

−
(

ρiω
1/2
d,i − γω

1/2
c,i

)

)

1 + (α−1 − 1)κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
λ

1−1/ψ
1v,j (λ1d,j + 1)

(A.30)

and we set

p∗∗ij = pij

1 + (α−1 − 1)Φ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

−
(

ρiω
1/2
d,i − γω

1/2
c,i

)

)

1 + (α−1 − 1) κ1−γ
N
∑

j=1

pijΦ

(

ln

(

κ
λ1z,i
λ1v,j

)

−µc,i

ω
1/2
c,i

)
(A.31)

so that:

λ1d,i = δ

(

1

λ1z,i

)1−1/ψ

exp

(

µcd,i +
1

2
ωcd,i

) N
∑

j=1

p∗∗ij λ
1−1/ψ
1v,j (λ1d,j + 1) . (A.32)

We also have the following Lemma.
Lemma 1: The solution to the linear system:

ui = vi

N
∑

j=1

pijwj (1 + uj) ∀i = 1, .., N

with unknowns ui, i = 1, .., N is given by:

ui = viw
⊤P [Id−DvwP ]−1 ei (A.33)

where ei is the N × 1 vector of zeroes but one at the position i, u = (u1, .., uN)⊤, v =
(v1, .., vN)⊤, w = (w1, .., wN)⊤ and Dvw is the diagonal matrix Dvw = Diag (v1w1, .., vNwN).

We use Lemma 1 to write the solution to the linear system (A.32) as:

λ1d,i = δ

(

1

λ1z,i

)
1

ψ
−γ

exp
(

µcd,i +
ωcd,i
2

)

(

λ
1

ψ
−γ

1v

)⊤

P ∗∗
(

Id− δA∗∗
(

µcd +
ωcd
2

))−1

ei

where

A∗∗ (u) = Diag

(

(

λ1v,1

λ1z,1

)
1

ψ
−γ

exp (u1) , ...,

(

λ1v,N

λ1z,N

)
1

ψ
−γ

exp (uN)

)

P ∗∗

and
P ∗∗⊤ =

[

p∗∗ij
]

1≤i,j≤N
.
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C Proofs of Formulas for Reported Statistics

We have the following Lemma.
Lemma 2: For any vectors a, b ∈ R

N and for any integer h, h > 0, we have

V ar

[

h
∑

j=1

(

a⊤ζt+j−1

) (

b⊤ζt+j
)

]

= h (a⊙ a)⊤E
[

ζtζ
⊤
t

]

P⊤ (b⊙ b) − h2
(

a⊤E
[

ζtζ
⊤
t

]

P⊤b
)2

+ 2
h
∑

j=2

(h− j + 1) a⊤E
[

ζtζ
⊤
t

]

P⊤
(

b⊙
(

(

P j−2
)⊤ (

a⊙
(

P⊤b
))

))

.

(A.34)

Proof of Lemma 2. Define the random variable ut as ut =
(

a⊤ζt−1

) (

b⊤ζt
)

. We have

V ar

[

h
∑

j=1

(

a⊤ζt+j−1

) (

b⊤ζt+j
)

]

= V ar

[

h
∑

j=1

ut+j

]

= hV ar [ut] + 2
h
∑

j=2

(h− j + 1)Cov (ut+1, ut+j) .

(A.35)

We first compute V ar [ut]. We have,

E [ut] = a⊤E
[

ζtζ
⊤
t+1

]

b = a⊤E
[

ζtE
[

ζ⊤t+1 | ζt
]]

b = a⊤E
[

ζtζ
⊤
t P

⊤
]

b = a⊤E
[

ζtζ
⊤
t

]

P⊤b.

(A.36)

In addition,

u2
t =

(

a⊤ζt
)2 (

b⊤ζt+1

)2
=
(

(a⊙ a)⊤ ζt

)(

(b⊙ b)⊤ ζt+1

)

.

Hence, the same calculations done in the proof of (A.36) yields to

E
[

u2
t

]

= (a⊙ a)⊤E
[

ζtζ
⊤
t

]

P⊤ (b⊙ b) . (A.37)

By combining (A.36) and (A.37), one gets

V ar [ut] = (a⊙ a)⊤E
[

ζtζ
⊤
t

]

P⊤ (b⊙ b) −
(

a⊤E
[

ζtζ
⊤
t

]

P⊤b
)2
. (A.38)

We now compute Cov (ut+1, ut+j). For j ≥ 2, we have

E [ut+1ut+j] = E
[(

a⊤ζt
) (

b⊤ζt+1

) (

a⊤ζt+j−1

) (

b⊤ζt+j
)]

= E
[(

a⊤ζt
) (

b⊤ζt+1

)

(a⊤ζt+j−1)
(

b⊤E [ζt+j | ζt+j−1]
)]

= E
[(

a⊤ζt
) (

b⊤ζt+1

) (

a⊤ζt+j−1

) (

b⊤Pζt+j−1

)]

= E
[

(

a⊤ζt
) (

b⊤ζt+1

)

(

(

a⊙
(

P⊤b
))⊤

ζt+j−1

)]

,

12



where the last equality follows from (A.10). Hence,

E [ut+1ut+j] = E
[

(

a⊤ζt
) (

b⊤ζt+1

)

(

(

a⊙
(

P⊤b
))⊤

E [ζt+j−1 | ζt+1]
)]

= E
[

(

a⊤ζt
) (

b⊤ζt+1

)

(

(

a⊙
(

P⊤b
))⊤

P j−2ζt+1

)]

= E

[

(

a⊤ζt
)

(

b⊙
(

(

P j−2
)⊤ (

a⊙
(

P⊤b
))

)⊤

ζt+1

)]

,

where again the last equality follows from (A.10). Therefore,

E [ut+1ut+j ] = a⊤E
[

ζtζ
⊤
t+1

]

(

b⊙
(

(

P j−2
)⊤ (

a⊙
(

P⊤b
))

))

= a⊤E
[

ζtζ
⊤
t

]

P⊤
(

b⊙
(

(

P j−2
)⊤ (

a⊙
(

P⊤b
))

))

.
(A.39)

By combining (A.36) and (A.39), one gets

Cov (ut+1, ut+j) = a⊤E
[

ζtζ
⊤
t

]

P⊤
(

b⊙
(

(

P j−2
)⊤ (

a⊙
(

P⊤b
))

))

−
(

a⊤E
[

ζtζ
⊤
t

]

P⊤b
)2
.

(A.40)
By plugging (A.38) and (A.40) into (A.35), one gets (A.34). We also have the following
Lemma.
Lemma 3: For any vectors a, b, c, d ∈ R

N and for any integer h, h > 0, we have

Cov

(

h
∑

j=1

(

a⊤ζt+j−1

) (

b⊤ζt+j
)

,

h
∑

j=1

(

c⊤ζt+j−1

) (

d⊤ζt+j
)

)

=

h
∑

j=1

(a⊙ c)⊤E
[

ζtζ
⊤
t

]

P⊤ (b⊙ d) − h2
(

a⊤E
[

ζtζ
⊤
t

]

P⊤b
) (

c⊤E
[

ζtζ
⊤
t

]

P⊤d
)

+

h
∑

j=2

a⊤E
[

ζtζ
⊤
t

]

P⊤



b⊙





(

j−2
∑

i=0

P i

)⊤

(

c⊙
(

P⊤d
))









+
h
∑

j=2

c⊤E
[

ζtζ
⊤
t

]

P⊤



d⊙





(

j−2
∑

i=0

P i

)⊤

(

a⊙
(

P⊤b
))







 .

(A.41)

Proof of Lemma 3. Similar techniques and hints are used as for the proof of Lemma 2.
Lemma 2 is also a particular case of Lemma 3.

C.1 Expected Values

We have

Rt+1 =
Pd,t+1 +Dt+1

Pd,t
=

Dt

Pd,t

Dt+1

Dt

(

Pd,t+1

Dt+1

+ 1

)

=
(

λ⊤2dζt
)

exp (∆dt+1)
(

λ⊤1dζt+1 + 1
)

=
(

λ⊤2dζt
)

exp (∆dt+1)
(

λ⊤3dζt+1

)

,

13



where the last equality holds given that e⊤ζt+1 = 1. Given the information Jt, the processes
ζt+1 and ∆dt+1 are independent. Therefore,

E [Rt+1 | Jt] = E
[(

λ⊤2dζt
)

exp (∆dt+1)
(

λ⊤3dζt+1

)

| Jt
]

=
(

λ⊤2dζt
)

E [exp (∆dt+1) | Jt]E
[(

λ⊤3dζt+1

)

| Jt
]

=
(

λ⊤2dζt
)

exp
(

µ⊤
d ζt + ω⊤

d ζt/2
)

λ⊤3dE [ζt+1 | Jt]
=
(

λ⊤2dζt
)

exp
(

µ⊤
d ζt + ω⊤

d ζt/2
)

λ⊤3dPζt

= ψ⊤
d ζt.

Consequently, ∀j ≥ 2

E [Rt+j | Jt] = ψ⊤
d E [ζt+j−1 | Jt] = ψ⊤

d P
j−1ζt.

Finally,

E [Rt+1:t+h | Jt] = E

[

h
∑

j=1

Rt+j | Jt
]

= ψ⊤
d

(

h
∑

j=1

P j−1

)

ζt = ψ⊤
h,dζt.

Aggregate consumption and dividend growth rates over h periods are defined by:

∆ct+1:t+h =

h
∑

j=1

∆ct+j and ∆dt+1:t+h =

h
∑

j=1

∆dt+j .

Similar arguments and techniques can be used to prove that the expected values of these
multi-period growth rates are given by:

E [∆ct+1:t+h | Jt] = µ⊤
chζt and E [∆dt+1:t+h | Jt] = µ⊤

dhζt

where

µch =

(

h
∑

j=1

P j−1

)⊤

µc and µdh =

(

h
∑

j=1

P j−1

)⊤

µd.

C.2 Covariances

We also have

Cov

(

Rt+1:t+h,
Dt

Pt

)

= Cov
(

E [Rt+1:t+h | Jt] , λ⊤2dζt
)

= Cov
(

ψ⊤
h,dζt, λ

⊤
2dζt
)

= ψ⊤
h,dCov

(

ζt, ζ
⊤
t λ2d

)

= ψ⊤
h,dV ar [ζt]λ2d.

Similar arguments and techniques are used to prove that covariances of growth rates
with the dividend-price ratio are given by:

Cov

(

∆ct+1:t+h,
Dt

Pt

)

= µ⊤
chV ar [ζt]λ2d (A.42)

Cov

(

∆dt+1:t+h,
Dt

Pt

)

= µ⊤
dhV ar [ζt]λ2d. (A.43)
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C.3 Variances

Observe that conditional on the information set {ζτ , τ ∈ Z}, the variables Rt+j , j = 1, ..., h,
are independent. Therefore,

V ar [Rt+1:t+h] = V ar [E [Rt+1:t+h | {ζτ , τ ∈ Z}]] + E [V ar [Rt+1:t+h | {ζτ , τ ∈ Z}]]

= V ar

[

h
∑

j=1

E [Rt+j | {ζτ , τ ∈ Z}]
]

+ E

[

h
∑

j=1

V ar [Rt+j | {ζτ , τ ∈ Z}]
]

.

(A.44)

Given that Rt+j =
(

λ⊤2dζt+j−1

) (

λ⊤3dζt+j
)

exp (∆dt+j), we have

E [Rt+j | {ζτ , τ ∈ Z}] =
(

λ⊤2dζt+j−1

) (

λ⊤3dζt+j
)

E [exp (∆dt+j) | {ζτ , τ ∈ Z}]
=
(

λ⊤2dζt+j−1

) (

λ⊤3dζt+j
)

exp
(

µ⊤
d ζt+j−1 + ω⊤

d ζt+j−1/2
)

=
(

θ⊤1dζt+j−1

) (

λ⊤3dζt+j
)

,

(A.45)

and

V ar [Rt+j | {ζτ , τ ∈ Z}] =
(

λ⊤2dζt+j−1

)2 (
λ⊤3dζt+j

)2
V ar [exp (∆dt+j) | {ζτ , τ ∈ Z}]

=
(

(λ2d ⊙ λ2d)
⊤ ζt+j−1

)(

(λ3d ⊙ λ3d)
⊤ ζt+j

)

(

exp
(

2µ⊤
d ζt+j−1 + 2ω⊤

d ζt+j−1

)

− exp
(

2µ⊤
d ζt+j−1 + ω⊤

d ζt+j−1

))

=
(

θ⊤2dζt+j−1

) (

θ⊤3dζt+j
)

.

(A.46)

Consequently,

E

[

h
∑

j=1

V ar [Rt+j | {ζτ , τ ∈ Z}]
]

= E

[

h
∑

j=1

(

θ⊤2dζt+j−1

) (

θ⊤3dζt+j
)

]

= θ⊤2d

h
∑

j=1

E
[

ζt+j−1ζ
⊤
t+j

]

θ3d

= θ⊤2d

h
∑

j=1

E
[

ζt+j−1E[ζ⊤t+j | Jt+j−1]
]

θ3d

= θ⊤2d

h
∑

j=1

E
[

ζt+j−1ζ
⊤
t+j−1P

⊤
]

θ3d,

i.e.,

E

[

h
∑

j=1

V ar [Rt+j | {ζτ , τ ∈ Z}]
]

= hθ⊤2dE
[

ζtζ
⊤
t

]

P⊤θ3d. (A.47)
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In addition, we have

V ar

[

h
∑

j=1

E [Rt+j | {ζτ , τ ∈ Z}]
]

= V ar

[

h
∑

j=1

(

θ⊤1dζt+j−1

) (

λ⊤3dζt+j
)

]

.

Therefore, by using (A.34), one gets

V ar

[

h
∑

j=1

E [Rt+j | {ζτ , τ ∈ Z}]
]

= h (θ1d ⊙ θ1d)
⊤E

[

ζtζ
⊤
t

]

P⊤ (λ3d ⊙ λ3d) − h2
(

θ⊤1dE
[

ζtζ
⊤
t

]

P⊤λ3d

)2

+ 2
h
∑

j=2

(h− j + 1) θ⊤1dE
[

ζtζ
⊤
t

]

P⊤
(

λ3d ⊙
(

(

P j−2
)⊤ (

θ1d ⊙
(

P⊤λ3d

))

))

.

(A.48)

Finally, by combining (A.44) with (A.47) and (A.48), one gets the variance of aggregate
returns:

V ar [Rt+1:t+h] = hθ⊤2dE
[

ζtζ
⊤
t

]

P⊤θ3d.

+ h (θ1d ⊙ θ1d)
⊤E

[

ζtζ
⊤
t

]

P⊤ (λ3d ⊙ λ3d) − h2
(

θ⊤1dE
[

ζtζ
⊤
t

]

P⊤λ3d

)2

+ 2
h
∑

j=2

(h− j + 1) θ⊤1dE
[

ζtζ
⊤
t

]

P⊤
(

λ3d ⊙
(

(

P j−2
)⊤ (

θ1d ⊙
(

P⊤λ3d

))

))

,

(A.49)

One has:

V ar [Rf,t+1:t+h] = V ar

[

h
∑

j=1

(

λ⊤2fζt+j−1

)

]

= V ar

[

h
∑

j=1

(

λ⊤2fζt+j−1

) (

e⊤ζt+j
)

]

which can be computed directly from (A.34):

V ar [Rf,t+1:t+h] = h (λ2f ⊙ λ2f)
⊤E

[

ζtζ
⊤
t

]

P⊤ (e⊙ e) − h2
(

λ⊤2fE
[

ζtζ
⊤
t

]

P⊤e
)2

+ 2

h
∑

j=2

(h− j + 1)λ⊤2fE
[

ζtζ
⊤
t

]

P⊤
(

e⊙
(

(

P j−2
)⊤ (

λ2f ⊙
(

P⊤e
))

))

.

(A.50)

Also, one has:

Cov (Rt+1:t+h, Rf,t+1:t+h) = Cov (E [Rt+1:t+h | {ζτ , τ ∈ Z}] , Rf,t+1:t+h)

= Cov

(

h
∑

j=1

(

θ⊤1dζt+j−1

) (

λ⊤3dζt+j
)

,

h
∑

j=1

(

λ⊤2fζt+j−1

) (

e⊤ζt+j
)

)
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which can be computed directly from (A.41):

Cov (Rt+1:t+h, Rf,t+1:t+h)

=

h
∑

j=1

(θ1d ⊙ λ2f)
⊤E

[

ζtζ
⊤
t

]

P⊤ (λ3d ⊙ e) − h2
(

θ⊤1dE
[

ζtζ
⊤
t

]

P⊤λ3d

) (

λ⊤2fE
[

ζtζ
⊤
t

]

P⊤e
)

+
h
∑

j=2

θ⊤1dE
[

ζtζ
⊤
t

]

P⊤



λ3d ⊙





(

j−2
∑

i=0

P i

)⊤

(

λ2f ⊙
(

P⊤e
))









+
h
∑

j=2

λ⊤2fE
[

ζtζ
⊤
t

]

P⊤



e⊙





(

j−2
∑

i=0

P i

)⊤

(

θ1d ⊙
(

P⊤λ3d

))







 .

(A.51)

Observe that the variance of aggregate excess returns is given by:

V ar
[

Re
t+1:t+h

]

= V ar [Rt+1:t+h] − 2Cov (Rt+1:t+h, Rf,t+1:t+h) + V ar [Rf,t+1:t+h]

which the formula is obtained by combining (A.49), (A.50) and (A.51).
Remark that:

V ar [ζt+1:t+h] = V ar [ζt:t+h−1] = V ar

[

h
∑

j=1

ζt+j−1

]

= hV ar [ζt] + 2
h
∑

j=2

(h− j + 1)Cov (ζt, ζt+j−1)

= hV ar [ζt] + 2
h
∑

j=2

(h− j + 1)Cov (ζt, E [ζt+j−1 | Jt])

= hV ar [ζt] + 2
h
∑

j=2

(h− j + 1)Cov
(

ζt, P
j−1ζt

)

=

(

hI + 2
h
∑

j=2

(h− j + 1)P j−1

)

V ar [ζt] . (A.52)

In addition, variances of growth rates are also given by:

V ar [∆ct+1:t+h] = V ar [E [∆ct+1:t+h | {ζτ , τ ∈ Z}]] + E [V ar [∆ct+1:t+h | {ζτ , τ ∈ Z}]]
= V ar

[

µ⊤
c ζt:t+h−1

]

+ E
[

ω⊤
c ζt:t+h−1

]

= µ⊤
c V ar [ζt:t+h−1]µc + hω⊤

c Π (A.53)

V ar [∆dt+1:t+h] = V ar [E [∆dt+1:t+h | {ζτ , τ ∈ Z}]] + E [V ar [∆dt+1:t+h | {ζτ , τ ∈ Z}]]
= V ar

[

µ⊤
d ζt:t+h−1

]

+ E
[

ω⊤
d ζt:t+h−1

]

= µ⊤
d V ar [ζt:t+h−1]µd + hω⊤

d Π (A.54)

where V ar [ζt:t+h−1] = V ar [ζt+1:t+h] given by (A.52) and since E [ζt:t+h−1] = hE [ζt] = hΠ.
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C.4 Predictability of Volatility

To assess the predictive power of equity return volatility by the dividend price ratio, we
first compute the population regression

Rt+1 = aR + bRRt + UR,t+1 (A.55)

where Rt+1 denotes the gross return on equity:

Rt+1 =
(

λ⊤2dζt
)

exp
(

µ⊤
d ζt +

(

ω⊤
d ζt
)1/2

εd,t+1

)

(

λ⊤3dζt+1

)

. (A.56)

It follows that

UR,t+1 = Rt+1 − bRRt − aR where bR =
Cov (Rt+1, Rt)

V ar [Rt]
and aR = E [Rt+1] (1 − bR) .

(A.57)

We measure volatility as a moving sum of these squared residuals and consider the predictive
regression

h
∑

j=1

U2
R,t+j = a (h) + b (h)

Dt

Pt
+ ηt+h (h) . (A.58)

Notice that

U2
R,t+j = R2

t+j + b2RR
2
t+j−1 − 2bRRt+jRt+j−1 − 2aRRt+j + 2aRbRRt+j−1 + a2

R, j ≥ 1.

(A.59)

Since the slope and the R2 of this regression are given by

b (h) =

Cov

(

h
∑

j=1

U2
R,t+j , Dt/Pt

)

V ar

[

h
∑

j=1

U2
R,t+j

] and R2 (h) =

(

Cov

(

h
∑

j=1

U2
R,t+j , Dt/Pt

))2

V ar

[

h
∑

j=1

U2
R,t+j

]

V ar [Dt/Pt]

(A.60)

and given that

Cov

(

h
∑

j=1

U2
R,t+j ,

Dt

Pt

)

=
h
∑

j=1

Cov

(

U2
R,t+j ,

Dt

Pt

)

and (A.61)

V ar

[

h
∑

j=1

U2
R,t+j

]

= hV ar
[

U2
R,t+1

]

+ 2
h−1
∑

j=1

(h− j)Cov
(

U2
R,t+1, U

2
R,t+1+j

)

, (A.62)

then, to be able to compute analytically the slope and the R2 of this predictive regres-
sion, we need to derive closed-form expressions for E [Rt+1], V ar [Rt+1], Cov (Rt+1, Rt),
V ar

[

U2
R,t+1

]

, Cov
(

U2
R,t+j , Dt/Pt

)

and Cov
(

U2
R,t+1, U

2
R,t+1+j

)

for j ≥ 1.
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To compute these expressions, observe that:

V ar
[

U2
R,t+1

]

=
(

1 + b4R
)

V ar
[

R2
t+1

]

+ 4b2RV ar [Rt+1Rt] +
(

4a2
R + 4a2

Rb
2
R

)

V ar [Rt+1]

+ 2b2RCov
(

R2
t+1, R

2
t

)

− 4bRCov
(

R2
t+1, Rt+1Rt

)

+ 4aRbRCov
(

R2
t+1, Rt

)

− 4b3RCov
(

R2
t , Rt+1Rt

)

− 4aRb
2
RCov

(

R2
t , Rt+1

)

+
(

4aRb
3
R − 4aR

)

Cov
(

R2
t+1, Rt+1

)

+ 8aRbRCov (Rt+1Rt, Rt+1) − 8aRb
2
RCov (Rt+1Rt, Rt) − 8a2

RbRCov (Rt+1, Rt)

Cov
(

U2
R,t+1, U

2
R,t+1+j

)

=
(

1 + b4R
)

Cov
(

R2
t+1, R

2
t+1+j

)

+ 4b2RCov (Rt+1Rt, Rt+1+jRt+j)

+
(

4a2
R + 4a2

Rb
2
R

)

Cov (Rt+1, Rt+1+j) + b2R
[

Cov
(

R2
t+1, R

2
t+j

)

+ Cov
(

R2
t , R

2
t+1+j

)]

− 2bR
[

Cov
(

R2
t+1, Rt+1+jRt+j

)

+ Cov
(

Rt+1Rt, R
2
t+1+j

)]

+ 2aRbR
[

Cov
(

R2
t+1, Rt+j

)

+ Cov
(

Rt, R
2
t+1+j

)]

− 2b3R
[

Cov
(

R2
t , Rt+1+jRt+j

)

+ Cov
(

Rt+1Rt, R
2
t+j

)]

− 2aRb
2
R

[

Cov
(

R2
t , Rt+1+j

)

+ Cov
(

Rt+1, R
2
t+j

)]

+
(

2aRb
3
R − 2aR

) [

Cov
(

R2
t , Rt+j

)

+ Cov
(

Rt, R
2
t+j

)]

+ 4aRbR [Cov (Rt+1Rt, Rt+1+j) + Cov (Rt+1, Rt+1+jRt+j)]

− 4aRb
2
R [Cov (Rt+1Rt, Rt+j) + Cov (Rt, Rt+1+jRt+j)]

− 4a2
RbR [Cov (Rt+1, Rt+j) + Cov (Rt, Rt+1+j)]

Cov

(

U2
R,t+j ,

Dt

Pt

)

= Cov

(

R2
t+j ,

Dt

Pt

)

+ b2RCov

(

R2
t+j−1,

Dt

Pt

)

− 2bRCov

(

Rt+jRt+j−1,
Dt

Pt

)

− 2aRCov

(

Rt+j ,
Dt

Pt

)

+ 2aRbRCov

(

Rt+j−1,
Dt

Pt

)

We are able to get all the terms in V ar
[

U2
R,t+1

]

and in Cov
(

U2
R,t+1, U

2
R,t+1+j

)

, j ≥ 1 if

we can compute Cov
(

Rn
t+1R

m
t , R

q
t+1+jR

p
t+j

)

, j ≥ 1 for given nonnegative integers n, m, q
and p. We have:

Cov
(

Rn
t+1R

m
t , R

q
t+1+jR

p
t+j

)

= E
[

Rm
t R

n
t+1R

p
t+jR

q
t+1+j

]

− E
[

Rm
t R

n
t+1

]

E
[

Rp
t+jR

q
t+1+j

]

.

Also observe that we can compute Cov
(

Rn
t+1R

m
t , R

q
t+1+jR

p
t+j

)

, j ≥ 1 for given nonneg-

ative integers n, m, q and p if we can compute E
[

Rm
t R

n
t+1R

p
t+jR

q
t+1+j

]

, j > 1 for given
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nonnegative integers n, m, q and p. We have

E
[

Rm
t R

n
t+1R

p
t+jR

q
t+1+j

]

= E
[

E
[

Rm
t R

n
t+1R

p
t+jR

q
t+1+j | ζτ , τ ∈ Z

]]

= E
[

E [Rm
t | ζτ , τ ∈ Z]E

[

Rn
t+1 | ζτ , τ ∈ Z

]

E
[

Rp
t+j | ζτ , τ ∈ Z

]

E
[

Rq
t+j+1 | ζτ , τ ∈ Z

]]

= E
[(

θ⊤0mζt−1

) (

θ⊤mnζt
) (

θ⊤n0ζt+1

) (

θ⊤0pζt+j−1

) (

θ⊤pqζt+j
) (

θ⊤q0ζt+j+1

)]

= θ⊤0mE
[

ζtζ
⊤
t

]

P⊤
(

θmn ⊙
(

P⊤
(

θn0 ⊙
(

(

P j−2
)⊤ (

θ0p ⊙
(

P⊤
(

θpq ⊙
(

P⊤θq0
))))

))))

where the second equality comes from the fact that returns are independent conditionally
to the Markov chain, and where

θkl = λk3d ⊙ λl2d ⊙ exp

(

lµd +
l2ωd
2

)

. (A.63)

We can also get all the terms in

Cov
(

U2
R,t+j , Dt/Pt

)

, j ≥ 1

if we can compute

Cov
(

Rn
t+jR

m
t+j−1, Dt/Pt

)

for j ≥ 1, n ≥ 0 and m ≥ 0.

We have

Cov

(

Rn
t+jR

m
t+j−1,

Dt

Pt

)

= Cov
(

E
[

Rn
t+jR

m
t+j−1 | ζτ , τ ∈ Z

]

, λ⊤2dζt
)

= Cov
(

E
[

Rm
t+j−1 | ζτ , τ ∈ Z

]

E
[

Rn
t+j | ζτ , τ ∈ Z

]

, λ⊤2dζt
)

= Cov
((

θ⊤0mζt+j−2

) (

θ⊤mnζt+j−1

) (

θ⊤n0ζt+j
)

, λ⊤2dζt
)

=















θ⊤0mE
[

ζtζ
⊤
t

]

P⊤
(

θmn ⊙ λ2d ⊙
(

P⊤θn0

))

−
(

θ⊤0mE
[

ζtζ
⊤
t

]

P⊤
(

θmn ⊙
(

P⊤θn0

))) (

λ⊤2dE [ζt]
)

if j = 1

λ⊤2dV ar [ζt] (P
j−2)

⊤ (

θ0m ⊙
(

P⊤
(

θmn ⊙
(

P⊤θn0

))))

if j > 1.

Similar formulas can be obtained for consumption growth and dividend growth volatil-
ities using the following table of parameter substitution:

Returns Consumption Growth Dividend Growth

λ3d e e
λ2d e e
µd µc µd
ωd ωc ωd
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D GDA Vs. KP Certainty Equivalents

We have proven that in the long-run risk and recursive utility framework, the GDA cer-
tainty equivalent solves both asset pricing puzzles, high predictability of long-horizon excess
returns by the dividend-price ratio and the low (or say no) predictability of long-horizon
growth rates by the dividend-price ratio, whereas the KP certainty equivalent only solves
asset pricing puzzles and produces opposite results in predictability regressions (low or no
predictability of returns and high predictability of growth rates by the dividend-price ra-
tio). One might ask how risk-averse is the GDA representative investor compared to the
KP one? To answer this question, we compare the indifference curves of the GDA certainty
equivalent with (γ = 2.5, α = 0.33, κ = 0.985) to that of the KP certainty equivalent with
γ = 10 considered by Bansal and Yaron (2004) and Bansal, Kiku and Yaron (2006).

Let Z be an atemporal lottery that put the probability p on the outcome x and 1−p on
the outcome y. Such a lottery is then characterized by a three-dimensional vector (x, y, p)⊤

where p = Prob (x). For a given number µ, let focus our attention on all the atemporal
lotteries Z such that R (Z) = µ, that is the indifference set indexed by µ. This set is a
surface S (x, y, p) = 0 in the space (x, y, p), which for a given y0 leads to an indifference
curve p = f (x, y0) in the plane (x, p), and for a given p0 leads to an indifference curve
y = g (x, p0) in the plane (x, y).

With GDA preferences, the indifference set indexed by µ in the space (x, y, p) is the
surface characterized by the implicit equation:3

Iα,κ

(

y

κµ

)

µ1−γ − Iα,1

(

y

κµ

)

y1−γ − p

{[

Iα,1

(

x

κµ

)

x1−γ − Iα,1

(

y

κµ

)

y1−γ

]

−
[

Iα,κ

(

x

κµ

)

− Iα,κ

(

y

κµ

)]

µ1−γ

}

= 0.

Panels (a) and (b) Figure 1 shows the well-known result that, the more risk-averse is an
investor, the more pronounced is the curvature of the indifference curve. In Panel (a), the
indifference curve in the plane (x, p) of our GDA investor with (γ = 2.5, α = 0.33, κ = 0.985)
lies in between the indifference curves of KP investors with risk aversions γ = 3 and
γ = 5 that are less curved than the indifference curve of a KP investor with γ = 10.
Panel (b), shows that the indifference curve in the plane (x, y) of our GDA investor is less
curved in the tails compared to that of the KP investor with γ = 10 and both almost
have the same curvature elsewhere. Based on that observation, we argue that our chosen
preference parameters for the GDA investor are reasonable if one admits that γ = 10 is
a reasonable upper bound for the risk aversion parameter for KP preferences (Mehra and
Prescott (1985)).

3The probability p of the outcome x is then given by:

p =
Iα,κ

(

y

κµ

)

µ1−γ − Iα,1

(

y

κµ

)

y1−γ

[

Iα,1

(

x

κµ

)

x1−γ − Iα,1

(

y

κµ

)

y1−γ

]

−
[

Iα,κ

(

x

κµ

)

− Iα,κ

(

y

κµ

)]

µ1−γ

and this is the explicit equation of an indifference curve in the plane (x, y) for a given y.
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Figure 1: Indifference Curves for GDA Preferences
Indifference curves over two outcomes x and y with the fixed probability p = Prob (x) =
1/2.
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Table 1: Small Sample Fit of the Long-Run Risk Markov-Switching Model.
In the table, we report and compare moments of simulated annualized consumption and
dividend growth rates. Data are simulated from the original LRR model as well as from its
Markov-Switching match. Reported statistics are based on 10, 000 simulated samples with
78×12 monthly observations that match the length of the actual data. The entries represent
mean, median, 5th, 10th, 90th and 95th percentiles of the monte-carlo distributions of the
corresponding statistics.

mean 5% 10% 50% 90% 95%

E [∆c] LRR 1.80 0.82 1.07 1.80 2.55 2.79
MS 1.80 0.88 1.13 1.86 2.36 2.48

σ [∆c] LRR 3.25 1.83 2.07 3.18 4.51 4.87
MS 2.63 1.51 1.62 2.24 4.50 4.82

AR1 (∆c) LRR 0.16 -0.06 -0.01 0.16 0.33 0.38
MS 0.22 -0.12 -0.06 0.21 0.51 0.57

E [∆d] LRR 1.77 -2.34 -1.32 1.74 4.89 5.86
MS 1.77 -1.76 -0.80 1.88 4.13 5.01

σ [∆d] LRR 18.94 10.83 12.09 18.53 26.26 28.29
MS 14.91 9.15 9.52 11.08 28.14 30.19

AR1 (∆d) LRR 0.02 -0.18 -0.14 0.02 0.18 0.23
MS 0.04 -0.17 -0.13 0.04 0.22 0.27

Corr (∆c,∆d) LRR 0.44 0.26 0.30 0.44 0.57 0.60
MS 0.46 0.28 0.32 0.47 0.60 0.64
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