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Appendix

A Stochastic Discount Factor and Valuation Ratios

Appendix A provides the analytical formulae of financial variables implied by the model at the high

frequency level (here daily level). They are proved in Bonomo et al. (2011). The Markov chain is

stationary with ergodic distribution and second moments given by:

E [ζt] = µζ ∈ RN+ ,

E
[
ζtζ
>
t

]
= Diag

(
µζ1, .., µ

ζ
N

)
and Σζ = V ar [ζt] = Diag

(
µζ1, .., µ

ζ
N

)
− µζ

(
µζ
)>

,

(A.1)

where Diag (u1, .., uN ) is the N ×N diagonal matrix whose diagonal elements are u1,..,uN .

In order to compute expectations conditional to the Markov chain, we make use of the following

results: Let X and Y be two normally distributed random variables with means µX and µY ,

variances σ2
X and σ2

Y , and covariance σXY . Then, we have

E [exp (uX + vY ) I (X < x)]

= exp

(
uµX + vµY +

1

2

(
u2σ2

X + 2uvσXY + v2σ2
Y

))
Φ

(
x− µX
σX

− uσX − v
σXY
σX

)
,

(A.2)

where Φ (·) is the standard normal cumulative distribution function.

We then show that the stochastic discount factor Mt,t+∆ can also be written as

Mt,t+∆ = δ∗t,t+∆ exp (−γgc,t+∆) [1 + `I (gc,t+∆ < −gv,t+∆ + ln θ)] (A.3)

where

ln δ∗t,t+∆ = ζ>t Aζt+∆ and gv,t+∆ = ζ>t Bζt+∆ (A.4)

and where the components of matrices A and B are explicitly defined by

aij = ln δ +

(
1

ψ
− γ
)
bij − ln

1 + `θ1−γ
N∑
j=1

pijΦ (qij)


bij = ln

(
λ1v,j

λ1z,i

)
and qij =

−bij + ln θ − µc,i√
ωc,i

.

(A.5)
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Likewise, one has:

Proposition A.1 Characterization of Welfare Valuation Ratios. Let

Rt (Vt+∆)

Ct
= λ>1zζt and

Vt
Ct

= λ>1vζt

respectively denote the ratio of the certainty equivalent of future lifetime utility to current consump-

tion and the ratio of lifetime utility to consumption. The components of the vectors λ1z and λ1v

are given by:

λ1z,i = exp

(
µc,i +

1− γ
2

ωc,i

) N∑
j=1

p∗ijλ
1−γ
1v,j

 1
1−γ

(A.6)

λ1v,i =

{
(1− δ) + δλ

1− 1
ψ

1z,i

} 1

1− 1
ψ if ψ 6= 1 and λ1v,i = λδ1z,i if ψ = 1, (A.7)

where the matrix P ∗> =
[
p∗ij

]
1≤i,j≤N

is defined in (A.11).

In the following, � denotes the component-by-component multiplication operator.

Proposition A.2 Characterization of Asset Prices. Let

Pd,t
Dt

= λ>1dζt,
Pc,t
Ct

= λ>1cζt and Rf,t+∆ =
1

λ>1fζt

respectively denote the price-dividend ratio, the price-consumption ratio and the risk-free rate. The

components of the vectors λ1d, λ1c, and λ1f are given by:

λ1d,i = δ

(
1

λ1z,i

) 1
ψ
−γ

exp
(
µcd,i +

ωcd,i
2

)(
λ

1
ψ
−γ

1v

)>
P ∗∗

(
Id− δA∗∗

(
µcd +

ωcd
2

))−1
ei (A.8)

λ1c,i = δ

(
1

λ1z,i

) 1
ψ
−γ

exp
(
µcc,i +

ωcc,i
2

)(
λ

1
ψ
−γ

1v

)>
P ∗
(
Id− δA∗

(
µcc +

ωcc
2

))−1
ei (A.9)

λ1f,i = δ exp

(
−γµc,i +

γ2

2
ωc,i

) N∑
j=1

p̃∗ij

(
λ1v,j

λ1z,i

) 1
ψ
−γ

(A.10)

where the vectors µcd = −γµc + µd, ωcd = ωc + ωd − 2γρ � √ωc �
√
ωd, µcc = (1− γ)µc, ωcc =

(1− γ)2 ωc, and the matrices P ∗∗> =
[
p∗∗ij

]
1≤i,j≤N

and P̃ ∗> =
[
p̃∗ij

]
1≤i,j≤N

as well as the matrix

functions A∗∗ (u) and A∗ (u) are defined in (A.13), (A.14), (A.12) and (A.15), respectively. The
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vector ei denotes the N × 1 vector with all components equal to zero but the ith component is equal

to one.

The components of the matrix P ∗> =
[
p∗ij

]
1≤i,j≤N

in (A.6) and (A.9), and the matrix function

A∗ (u) also in (A.9) are defined by:

p∗ij = pij
1 + `Φ

(
qij − (1− γ)

√
ωc,i
)

1 + `θ1−γ
N∑
j=1

pijΦ (qij)

(A.11)

A∗ (u) = Diag

(
exp

((
1

ψ
− γ
)
b11 + u1

)
, ..., exp

((
1

ψ
− γ
)
bNN + uN

))
P ∗, (A.12)

where Φ (·) denotes the cumulative distribution function of a standard normal random variable.

The matrix P ∗∗> =
[
p∗∗ij

]
1≤i,j≤N

in (A.8), and the matrix P̃ ∗> =
[
p̃∗ij

]
1≤i,j≤N

in (A.10) have

their components given by:

p∗∗ij = pij
1 + `Φ

(
qij −

(
ρi
√
ωd,i − γ

√
ωc,i
))

1 + `θ1−γ
N∑
j=1

pijΦ (qij)

(A.13)

p̃∗ij = pij
1 + `Φ

(
qij + γ

√
ωc,i
)

1 + `θ1−γ
N∑
j=1

pijΦ (qij)

. (A.14)

The matrix function A∗∗ (u) in (A.8) is defined by:

A∗∗ (u) = Diag

(
exp

((
1

ψ
− γ
)
b11 + u1

)
, ..., exp

((
1

ψ
− γ
)
bNN + uN

))
P ∗∗. (A.15)

B Time Aggregation: Model-Implied Low Frequency Moments

Appendix B provides the first and second moments of the vector (gc,t,t+h, gd,t,t+h, zd,t,t+h, rf,t,t+h, rt,t+h)>,

that is, consumption growth, dividend growth, log price-dividend ratio, log risk-free return and the

excess log equity-return at lower frequencies, like monthly, which are implied by the model defined

at the high frequency (here daily).

Given the postulated dynamics of endowment and the implied-dynamics of asset prices at the

frequency ∆ (at which several economic variables may be unobservable), we are interested in the

properties of these quantities at lower frequencies. We defined frequency h consumption growth,
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dividend growth, log price-dividend ratio, log risk-free return and excess log equity return over the

log risk free return as follows:

gc,t,t+h = ln

(
Ct,t+h
Ct−h,t

)
, gd,t,t+h = ln

(
Dt,t+h

Dt−h,t

)
and zd,t,t+h = ln

(
P̄d,t,t+h
Dt,t+h

)

rf,t,t+h =

h/∆∑
j=1

rf,t+j∆ and rt,t+h =

h/∆∑
j=1

rt+j∆

(B.1)

where rf,t+∆ = ν>1fζt with ν1f = lnλ1f , and where

Ct,t+h =

h/∆∑
i=1

Ct+i∆, Dt,t+h =

h/∆∑
i=1

Dt+i∆ and P̄d,t,t+h =
1

h/∆

h/∆∑
i=1

Pd,t+i∆. (B.2)

We show that

gc,t,t+h ≈ gc,t+∆ +

h/∆−1∑
j=1

(
1− j

h/∆

)
(gc,t+∆+j∆ + gc,t+∆−j∆)

gd,t,t+h ≈ gd,t+∆ +

h/∆−1∑
j=1

(
1− j

h/∆

)
(gd,t+∆+j∆ + gd,t+∆−j∆)

zd,t,t+h ≈ − ln (h/∆) +
1

h/∆

h/∆∑
j=1

zd,t+j∆ where zd,t = ln

(
Pd,t
Dt

)

=

h/∆∑
j=1

zd,h,t+j∆ where zd,h,t =
zd,t − ln (h/∆)

h/∆
.

(B.3)

It follows that first and second moments of the low frequency vector process

Lt,t+h =

(
gc,t,t+h gd,t,t+h zd,t,t+h rf,t,t+h rt,t+h

)>

are completely determined by those of the high frequency vector process

Ht =

(
gc,t gd,t zd,h,t rf,t rt

)>
.

The mean and the autocovariance matrices of the vector process Ht are defined by µH = E [Ht] =

(µH1 , µ
H
2 , µ

H
3 , µ

H
4 , µ

H
5 )> and
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ΓH (j) = Cov (Ht, Ht+j∆) =



γH11 (j) γH12 (j) γH13 (j) γH14 (j) γH15 (j)

γH21 (j) γH22 (j) γH23 (j) γH24 (j) γH25 (j)

γH31 (j) γH32 (j) γH33 (j) γH34 (j) γH35 (j)

γH41 (j) γH42 (j) γH43 (j) γH44 (j) γH45 (j)

γH51 (j) γH52 (j) γH53 (j) γH54 (j) γH55 (j)


. (B.4)

We have

µH1 = µ>c µ
ζ , µH2 = µ>d µ

ζ and µH3 = ν>1d,hµ
ζ , where ν1d,h =

ν1d − ln (h/∆)

h/∆
,

µH4 = ν>1fµ
ζ and µH5 = µ>r µ

ζ , with ν1d = lnλ1d,

(B.5)

where µr is the diagonal of ΛP , and ∀j ≥ 0 we have

γH11 (j) = µ>c P
jΣζµc +

(
ω>c µ

ζ
)
I (j = 0)

γH12 (j) = µ>d P
jΣζµc +

(
(ρ�

√
ωc �

√
ωd)
> µζ

)
I (j = 0)

γH13 (j) = ν>1d,hP
j+1Σζµc and γH14 (j) = ν>1fP

jΣζµc

γH15 (j) = µ>r P
jΣζµc +

(
(ρ�

√
ωc �

√
ωd)
> µζ

)
I (j = 0)

γH21 (j) = µ>c P
jΣζµd +

(
(ρ�

√
ωc �

√
ωd)
> µζ

)
I (j = 0)

γH22 (j) = µ>d P
jΣζµd +

(
ω>d µ

ζ
)
I (j = 0)

γH23 (j) = ν>1d,hP
j+1Σζµd and γH24 (j) = ν>1fP

jΣζµd

γH25 (j) = µ>r P
jΣζµd +

(
(ρ�

√
ωc �

√
ωd)
> µζ

)
I (j = 0)

γH31 (j) =
(
ν>1d,hPΣζµc

)
I (j = 0) +

(
µ>c P

j−1Σζν1d,h

)
I (j ≥ 1)

γH32 (j) =
(
ν>1d,hPΣζµd

)
I (j = 0) +

(
µ>d P

j−1Σζν1d,h

)
I (j ≥ 1)

γH33 (j) = ν>1d,hP
jΣζν1d,h and γH34 (j) =

(
ν>1d,hPΣζν1f

)
I (j = 0) +

(
ν>1fP

j−1Σζν1d,h

)
I (j ≥ 1)

γH35 (j) =
(
ν̆>1d,h,1µ

ζ −
(
ν>1d,hµ

ζ
)(

µ>r µ
ζ
))

I (j = 0) +
(
µ>r P

j−1Σζν1d,h

)
I (j ≥ 1)

γH41 (j) = µ>c P
jΣζν1f , γH42 (j) = µ>d P

jΣζν1f and γH43 (j) = ν>1d,hP
j+1Σζν1f

(B.6)
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γH44 (j) = ν>1fP
jΣζν1f and γH45 (j) = µ>r P

jΣζν1f

γH51 (j) =
(
µ>c Σζµr + (ρ�

√
ωc �

√
ωd)
> µζ

)
I (j = 0) +

(
µ̆>c,jµ

ζ −
(
µ>c µ

ζ
)(

µ>r µ
ζ
))

I (j ≥ 1)

γH52 (j) =
(
µ>d Σζµr + ω>d µ

ζ
)
I (j = 0) +

(
µ̆>d,jµ

ζ −
(
µ>d µ

ζ
)(

µ>r µ
ζ
))

I (j ≥ 1)

γH53 (j) = ν̆>1d,h,j+1µ
ζ −

(
ν>1d,hµ

ζ
)(

µ>r µ
ζ
)

γH54 (j) =
(
ν>1fΣζµr

)
I (j = 0) +

(
ν̆>1f,jµ

ζ −
(
µ>d µ

ζ
)(

µ>r µ
ζ
))

I (j ≥ 1)

γH55 (j) =

((
µ(2)
r + ωd

)>
µζ −

(
µ>r µ

ζ
)2
)
I (j = 0) +

(
µ̆>r,jµ

ζ −
(
µ>r µ

ζ
)2
)
I (j ≥ 1)

with γHnq (−j) = γHqn (j) for n, q ∈ {1, 2, 3, 4, 5}, where of a given vector u, we have ŭj is the

diagonal of the matrix
((
eu>P j−1

)
� Λ

)
P and where µ

(2)
r is the diagonal of the matrix (Λ� Λ)P .

We show that the components of the mean of the vector process Lt,t+h are given by:

µLi = (h/∆)µHi , for i ∈ {1, 2, 3, 4, 5} . (B.7)

The 5× 5 autocovariance matrices of the vector process Lt,t+h are defined by

ΓL (k) = Cov
(
Lt,t+h, Lt+kh,t+(k+1)h

)
. (B.8)

We have:

γLnq (k) = γHnq

(
kh

∆

)
+ 2

h/∆−1∑
j=1

(
1− j

h/∆

)(
γHnq

(
kh

∆
+ j

)
+ γHnq

(
kh

∆
− j
))

+

h/∆−1∑
j=1

h/∆−1∑
i=1

(
1− j

h/∆

)(
1− i

h/∆

)(
γHnq

(
kh

∆
+ i− j

)
+ γHnq

(
kh

∆
− i− j

)

γHnq

(
kh

∆
+ i+ j

)
+ γHnq

(
kh

∆
− i+ j

))

γLnl (k) =

h/∆∑
i=1

γHnl

(
kh

∆
+ i− 1

)

+

h/∆−1∑
j=1

h/∆∑
i=1

(
1− j

h/∆

)(
γHnl

(
kh

∆
+ i− j − 1

)
+ γHnl

(
kh

∆
+ i+ j − 1

))

γLlq (k) =

h/∆∑
i=1

γHlq

(
kh

∆
− i+ 1

)

(B.9)
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+

h/∆−1∑
j=1

h/∆∑
i=1

(
1− j

h/∆

)(
γHlq

(
kh

∆
− i+ j + 1

)
+ γHlq

(
kh

∆
− i− j + 1

))
for all n, q ∈ {1, 2} and l ∈ {3, 4, 5} .

We also have

γLnq (k) =
h

∆
γHnq

(
kh

∆

)
+

h/∆−1∑
j=1

(
h

∆
− j
)(

γHnq

(
kh

∆
+ j

)
+ γHnq

(
kh

∆
− j
))

for all n, q ∈ {3, 4, 5} .

(B.10)

C Risk-Return Trade-off

The autocovariance matrices of the vector process Xt−1,t are defined by

ΓX (l) = Cov (Xt−1,t, Xt+l−1,t+l) =

 γX11 (l) γX12 (l)

γX21 (l) γX22 (l)

 . (C.1)

The variances of long-horizon returns and long-horizon realized variance, as well as their co-

variances, can be expressed as follows:

V ar


 rt,t+h

σ2
t,t+h


 = V ar


 rt−h,t

σ2
t−h,t


 = hΓX (0) +

h−1∑
l=1

(h− l)
(

ΓX (l) + ΓX (l)>
)
. (C.2)

The covariance of future long-horizon returns with past long-horizon realized variance can be

expressed as follows:

Cov
(
σ2
t−m,t, rt,t+h

)
= min(m,h)

max(m,h)∑
l=min(m,h)

γX21 (l) +

min(m,h)−1∑
l=1

l
(
γX21 (l) + γX21 (m+ h− l)

)
. (C.3)

The covariance of past long-horizon returns with future long-horizon realized variance can be ex-

pressed as follows:

Cov
(
rt−m,t, σ

2
t,t+h

)
= min(m,h)

max(m,h)∑
l=min(m,h)

γX12 (l) +

min(m,h)−1∑
l=1

l
(
γX12 (l) + γX12 (m+ h− l)

)
. (C.4)
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We also have that ∀l and ∀n, q ∈ {1, 2},

γXnq (l) =
1

∆
γYnq

(
l

∆

)
+

1/∆−1∑
j=1

(
1

∆
− j
)(

γYnq

(
l

∆
+ j

)
+ γYnq

(
l

∆
− j
))

. (C.5)

D Leverage and Volatility Feedback Effects

The autocovariance matrices of the vector process Yt are defined by

ΓY (j) = Cov (Yt, Yt+j∆) =

 γY11 (j) γY12 (j)

γY21 (j) γY22 (j)

 . (D.1)

We recall the property ∀j ≥ 0, Et [ζt+j∆] = P jζt. Let Y
(n)
t denotes the nth component of the

vector process Yt, for example Y
(2)
t ≡ r2

t .

We now adopt the following notations, ∀n, q ∈ {1, 2}:

Et

[
Y

(n)
t+∆ | ζk∆, k ∈ Z

]
= ζ>t U

(n)ζt+∆,

Et

[
Y

(n)
t+∆Y

(q)
t+∆ | ζk∆, k ∈ Z

]
= ζ>t U

(nq)ζt+∆.

(D.2)

We show that:

U (1) = Λ and U (2) = (Λ� Λ) + ωde
>. (D.3)

We also show that:

U (11) = (Λ� Λ) + ωde
>

U (12) = U (21) = (Λ� Λ� Λ) + 3Λ�
(
ωde
>
)

U (22) = (Λ� Λ� Λ� Λ) + 6 (Λ� Λ)�
(
ωde
>
)

+ 3 (ωd � ωd) e>.

(D.4)

We also adopt the following notations, ∀n, q ∈ {1, 2}:

Et

[
Y

(n)
t+∆+j∆

]
=
(

Ψ
(n)
0

)>
P jζt,

Et

[
Y

(n)
t+∆Y

(q)
t+∆+j∆

]
=
(

Ψ
(nq)
j

)>
ζt, ∀j ≥ 0.

(D.5)
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We show that, ∀n, q ∈ {1, 2}:

Ψ
(n)
0 is the diagonal of the matrix U (n)P,

Ψ
(nq)
0 is the diagonal of the matrix U (nq)P,

Ψ
(nq)
j is the diagonal of the matrix

(
U (n) �

(
e
(

Ψ
(q)
0

)>
P j−1

))
P, ∀j ≥ 1.

(D.6)

Finally we have that, ∀n, q ∈ {1, 2}:

µYn = E
[
Y

(n)
t

]
=
(

Ψ
(n)
0

)>
µζ ,

γYnq (j) =

((
Ψ

(nq)
j

)>
µζ
)
−
((

Ψ
(n)
0

)>
µζ
)((

Ψ
(q)
0

)>
µζ
)
, ∀j ≥ 0.

(D.7)

E Variance Premium

E.1 Dynamics under the Q-measure

Henceforth, dynamics under the risk-neutral (Q) measure will be represented with Q subscript.

Dynamics of the Markov-chain: We have

EQ
t [ζt+∆] = Et [Mt,t+∆Rf,t+∆ζt+∆]

= . . .

= Et

[
ζt+∆ζ

>
t+∆

] (
M̃ �

(
λ2fe

>
))>

ζt

=
(
Diag

(
e>1 Pζt, . . . , e

>
NPζt

))(
M̃ �

(
λ2fe

>
))>

ζt

= . . .

= E
((

M̃ �
(
λ2fe

>
))>

⊗ P
)
E>ζt

(E.1)

where E is the N ×N2 matrix such that the ith row is the vector (ei ⊗ ei)>, where the components

of the matrix M̃ are given by:

m̃ij = exp

(
aij − γµc,i +

1

2
γ2ωc,i

)[
1 + `Φ

(
qij + γ

√
ωc,i
)]
, (E.2)

and where λ2f = 1/λ1f . It follows that, under the risk-neutral measure, the Markov chain st has
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the one-period transition probability matrix

PQ = E
((

M̃ �
(
λ2fe

>
))>

⊗ P
)
E>.

Let PQ(j) be the j-period transition probability matrix under the risk neutral measure, defined

by

EQ
t [ζt+j∆] = PQ(j)ζt. (E.3)

We show that PQ(j), j ≥ 1 satisfies the recursion

PQ(j) = PQ(j−1)E
((

λ
(j−1)
1f

(
λ

(1)
1f � λ

(j)
2f

)>)
⊗ PQ

)
E> with PQ(1) = PQ,

where λ
(j)
1f is the vector of j-period risk-free bond prices, defined by

Et [Mt,t+j∆] = λ
(j)>
1f ζt, (E.4)

and satisfying the recursion

λ
(j)
1f = λ1f �

(
PQ>λ

(j−1)
1f

)
with λ

(1)
1f = λ1f .

Dynamics of the returns and squared returns: We adopt the following notation, ∀n ∈ {1, 2}:

Et

[
Mt,t+∆Y

(n)
t+∆ | ζk∆, k ∈ Z

]
= ζ>t U

Q(n)ζt+∆. (E.5)

We show that

UQ(1) = exp

(
A− γµce> +

γ2

2
ωce
>
)
�
[(

Λ− γ (ρ�
√
ωc �

√
ωd) e

>
)
�
(

1 + `Φ
(
Q+ γ

√
ωce
>
))

−`
(

(ρ�
√
ωd) e

>
)
� φ

(
Q+ γ

√
ωce
>
)]

(E.6)
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UQ(2) = exp

(
A− γµce> +

γ2

2
ωce
>
)
�[(

ωde
> +

(
Λ− γ (ρ�

√
ωc �

√
ωd) e

>
)
�
(

Λ− γ (ρ�
√
ωc �

√
ωd) e

>
))
�(

1 + `Φ
(
Q+ γ

√
ωce
>
))

− 2`
(

(ρ�
√
ωd) e

>
)
�
(

Λ− γ (ρ�
√
ωc �

√
ωd) e

>
)
� φ

(
Q+ γ

√
ωce
>
)

−`
(

(ρ�
√
ωd) e

>
)
�
(

(ρ�
√
ωd) e

>
)
�
(
Q+ γ

√
ωce
>
)
� φ

(
Q+ γ

√
ωce
>
)]
.

(E.7)

We also adopt the following notation, ∀n ∈ {1, 2}:

EQ
t

[
Y

(n)
t+∆+j∆

]
=
(

Ψ
Q(n)
j

)>
ζt, ∀j ≥ 0. (E.8)

We show that Ψ
Q(n)
j , j ≥ 0 satisfies the recursion

Ψ
Q(n)
j =

(
λ

(1)
1f � λ

(j+1)
2f

)
�
(
PQ>

(
λ

(j)
1f �Ψ

Q(n)
j−1

))
(E.9)

with the initial condition

Ψ
Q(n)
0 is the diagonal of the matrix

(
λ2fe

>
)
�
(
UQ(n)P

)
. (E.10)

E.2 Proof of Proposition 3.1

The Markov property of the model implies that

σ2
r,t ≡ V art [rt,t+1] = ω>r ζt.

We have:

ω>r ζt = V art [rt,t+1] = V art

1/∆∑
j=1

rt+j∆


=

1/∆∑
j=1

V art [rt+j∆] + 2

1/∆∑
j=2

j−1∑
i=1

Covt (rt+i∆, rt+j∆) .
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Based on previous calculations, we have:

V art [rt+j∆] =
(

Ψ
(2)
0

)>
P j−1ζt −

((
Ψ

(1)
0

)>
P j−1ζt

)2

Covt (rt+i∆, rt+j∆) =
(

Ψ
(11)
j−i

)>
P i−1ζt −

((
Ψ

(1)
0

)>
P i−1ζt

)((
Ψ

(1)
0

)>
P j−1ζt

)
.

It follows that

ωr =

1/∆∑
j=1

((
Ψ

(2)
0

)>
P j−1 −

((
Ψ

(1)
0

)>
P j−1

)
�
((

Ψ
(1)
0

)>
P j−1

))>

+ 2

1/∆∑
j=2

j−1∑
i=1

((
Ψ

(11)
j−i

)>
P i−1 −

((
Ψ

(1)
0

)>
P i−1

)
�
((

Ψ
(1)
0

)>
P j−1

))>
.

The Markov property of the model implies

Et
[
σ2
r,t+j∆

]
= Υ>j ζt and EQ

t

[
σ2
r,t+j∆

]
= ΥQ>

j ζt,

and we show that:

Υj =
(
ω>r P

j
)>

and ΥQ
j =

(
ω>r P

Q(j)
)>

. (E.11)

It follows that

Et
[
σ2
r,t+1

]
= Υ>1/∆ζt and EQ

t

[
σ2
r,t+1

]
= ΥQ>

1/∆ζt,

which implies Eq. (24) in Proposition 3.1.

One can show that

Et
[
σ2
t,t+1

]
=
(

Ψ
(2)
0

)>1/∆∑
j=1

P j−1

 ζt and EQ
t

[
σ2
t,t+1

]
=

1/∆∑
j=1

(
Ψ

Q(2)
j−1

)>
ζt,

which leads to Eq. (25) in Proposition 3.1.
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Figure 1: Model Asset Pricing Moments: GDA ψ > 1
The entries of the figure are the first and second moments of the log price-dividend ratio, the log risk-free rate and

excess log equity returns, and finally the slope and R2 for the regression of 5-year future excess log equity returns

onto the current log price dividend ratio.
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Figure 2: Model Asset Pricing Moments: GDA ψ < 1
The entries of the figure are the first and second moments of the log price-dividend ratio, the log risk-free rate and

excess log equity returns, and finally the slope and R2 for the regression of 5-year future excess log equity returns

onto the current log price dividend ratio.
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Figure 3: Model Variance Premium Moments: GDA ψ < 1
The entries of the table are the first and second moments of the options implied variance, the realized variance and

the variance premium. All measures are on a monthly basis in percentage-squared.
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Figure 4: Model Short-Run Risk-Return Trade-Offs: GDA ψ < 1
The entries of the table are the slope coefficients as well as the coefficients of determination (R2

l ) of the regression

rt,t+l
l

= α0l + β1,0lvpt + ε
(0)
t,t+l

where vpt is the current monthly variance premium, and rt,t+l is the accumulated future monthly returns over l

months.
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Figure 5: Model Long-Run Risk-Return Trade-Offs: GDA ψ < 1
The entries of the table are the slope coefficients as well as the coefficients of determination (R2) of the regression

rt,t+h
h

= αhh + βhh
σ2
t−h,t

h
+ ε

(h)
t,t+h

were σ2
t−h,t is the accumulated past monthly realized variance over the last h months and rt,t+h is the accumulated

future monthly returns over the next h months.
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