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Appendix

A Stochastic Discount Factor and Valuation Ratios

Appendix A provides the analytical formulae of financial variables implied by the model at the high
frequency level (here daily level). They are proved in Bonomo et al. (2011). The Markov chain is

stationary with ergodic distribution and second moments given by:

EG] = u‘ € RY, o
E [QQT} = Diag (,ug, -'»/‘gv) and X¢ = Var [¢t] = Diag (F‘%’ "a/év) —us (MC>T7 '

where Diag (u1,..,un) is the N x N diagonal matrix whose diagonal elements are u1,..,uy.
In order to compute expectations conditional to the Markov chain, we make use of the following
results: Let X and Y be two normally distributed random variables with means pux and py,

variances a§< and 012,, and covariance oxy. Then, we have

Elexp (uX +vY) I (X < x)]

T — Ux oXy
—Uuocx —v
ox ox

L9 2 2 (4.2)
:exp(uux+vuy+2(u ox + 2uvoxy + v JY))Q)< ),

where @ (+) is the standard normal cumulative distribution function.

We then show that the stochastic discount factor M; ;A can also be written as

Miin =614 n€xXp (—79et+a) [+ (getra < —Gotta +1n0)] (A.3)

where

In 52k,t+A = C;ACHA and gy 1A = C;FBCHA (A.4)

and where the components of matrices A and B are explicitly defined by

N
1
aij = Ind + ( — 'y) bij —In (1 +£91_72pijq) (Qij)

v j=1 (A.5)
AMu,j —bij +In0 — i
bij =In (}\ij) and qi; = X o cz.



Likewise, one has:

Proposition A.1 Characterization of Welfare Valuation Ratios. Let

Ri (Viga)

.
G~ MG and é = My

respectively denote the ratio of the certainty equivalent of future lifetime utility to current consump-
tion and the ratio of lifetime utility to consumption. The components of the vectors A1, and Ay

are given by:

N 1=
1-— e
A12,2‘ = €xp <Nc,i + 2’yw07i> sz’jA}UJ (A6)
j=1
1—1 1_%
Ao = {(1 —0) + 6N, } Vi #£ 1 and Ay = A, if =1, (A7)
where the matrix P*' = [pw} Lcien is defined in (A.11).

In the following, @ denotes the component-by-component multiplication operator.

Proposition A.2 Characterization of Asset Prices. Let

Pd t T Pc t T 1
==\ = d R = —
Dt 1d<t7 Ct lcCt an f7t+A )\IfCt

respectively denote the price-dividend ratio, the price-consumption ratio and the risk-free rate. The

components of the vectors A\igq, e, and Ay are given by:

1

M =10 (/\llz’) o exp <ch,i + deJ) <)\§;—7> ! P (Id — 0A™ (,ucd + de)>71 ei  (A.8)

2 2
1
1 v Wee,i i - i * * Wee )\ 71
>\lc,z =0 <>\1z,i> exp <Mcc,z + 2 ) <)‘1v ) P (Id — A (,U/cc =+ 7)) €; (Ag)
2 N v
_ Y ) ~% )\1U7j v
)\lf,i - 6exp <_rylufc,i + 2wc,z> jz;pij <)\lz,i> (AlO)

where the vectors fieg = —Ype + fid; Wed = We + Wg — 27p © Jwe ® /W, fee = (1 — 'y) He, Wee =

(1-— 'y)ch, and the matrices P**T = {pff] N and P*T = [ﬁfj} N
1<i,j<N 1<i,j<N

functions A** (u) and A* (u) are defined in (A.13), (A.14), (A.12) and (A.15), respectively. The

as well as the matrix



vector e; denotes the N x 1 vector with all components equal to zero but the ith component is equal

to one.

*

Z} in (A.6) and (A.9), and the matrix function
Ji<ij<n

The components of the matrix P*' = [p

A* (u) also in (A.9) are defined by:

102 (g — (1-9) Vi)

Pij = Dij N
140017 3" pii® (qi5)
=1

A*@):l%q]Gmp<<;[—7>bu%ﬂu),mxmp<<iJ—7)hwv+uN)>fﬁ, (A.12)

where @ () denotes the cumulative distribution function of a standard normal random variable.

(A.11)

The matrix P*' = [p*fk in (A.10) have

”LSLJSN in (A.8), and the matrix P*T = [ﬁ*

1 } 1<ij<N
their components given by:

e 109 (g5 — (pi/oa; — 7/@7)) (A.13)

Pij = Dij N
140017 3" pii® (qi5)
=1

. (A.14)

N
L+001=7 3" piy® (qs5)
=

The matrix function A** (u) in (A.8) is defined by:

2 () = iag (xp (=7 )b+ ) s (( =7 )b+ ) ) P (419

B Time Aggregation: Model-Implied Low Frequency Moments

Appendix B provides the first and second moments of the vector (ge.t.14+h, Gdtt+hs Zdtt-+hs TFt1+h> rt7t+h)T,
that is, consumption growth, dividend growth, log price-dividend ratio, log risk-free return and the
excess log equity-return at lower frequencies, like monthly, which are implied by the model defined
at the high frequency (here daily).

Given the postulated dynamics of endowment and the implied-dynamics of asset prices at the
frequency A (at which several economic variables may be unobservable), we are interested in the

properties of these quantities at lower frequencies. We defined frequency h consumption growth,



dividend growth, log price-dividend ratio, log risk-free return and excess log equity return over the

log risk free return as follows:

C D P
ett+h = 1n (CWZ) s Gdti+h = 1n (thH-lz> and zgy4p = In (d,tt-s—h)

bt t—ht Digin
h/A h/A (B.1)
Tfttrh = Z rrirja and gy = Z Tt4jA
= =1

where r¢ A = lefgt with 11y = In A1y, and where

h/A h/A | A
Ciivn = ; Civin, Dien = ; Diyin and Pgyipn = WA ; Pyiyin. (B.2)
We show that
h/A—1

J
2 (1 — h/A> (Get+A1jA + Getra—jn)

h/A-1 .
J
gdtt+h = gdt+A + Z <1 - h/A> (9d,t+a+jA + Gdt+a—jA)
j=1

Jett+h = Get+A T
J

(B.3)
1 & Py
Zatirh = —In(h/A) + —— E Zdt+;A where zgy =In ( : >
h/A st Dy
= hE/A Zd.h A where Zd.ht — —Zd’t —In (h/A)
- b 7t+] b 7t - :
= h/A

It follows that first and second moments of the low frequency vector process

T
Lign = < Gett+h  9dtt+h  Zdtt+h  Tfti+h  Ttt+h )

are completely determined by those of the high frequency vector process

-
Ht:(ﬂc,t gdt Rdht Tft Tt> .

The mean and the autocovariance matrices of the vector process H; are defined by u! = F [H] =

(uf, pf, pf, pff, pi)T and



WG ARG AMEG) HEG) AEG)
i () () () v () ek ()
T (j) = Cov (Hy, Hipja) = | ML) 5 G) 2 G) EG) 4 G) (B.4)
WG MEG) s 0) () A G)
| G) b G) AEG) AEG) AEEG)
We have
p' = plps, py = pgpt and pd = vl ,uc, where vld,hzw, s

pi = vl and pdl = plpc, with vig =In g,

where p, is the diagonal of AP, and Vj > 0 we have

() = nd PISpe + (wl 1) 1 = 0)

M () = 1y PP+ (0 © Ve © vira) " 1€) 1(j = 0)

15 (5) = gy PP e and 1} () = v, PIS e

W G) = 1 PIsCpe+ (0 © Ve © via) i) 1 =0)

8 G) = 1l PP pa+ ((p© Ve © Vi) 1) (5 =0)

28 (7) = g P5pa + (g 1) 1 = 0)

73 (5) = g p P IEua and A3l () = 1 PIS g

98 () = 1 PP pa+ ((p© o © Vi) 1) 1 =0)

() = (vianPE0e) TG = 0)+ (pd P50 ) 1 2 1)

o () = (vianPEwa) 1G = 0) + (ud PP v1an) 1 = 1)

75 () = vian PP v and A% () = (vlanPEg ) 1G = 0) + (v PP 50000 ) TG 2 1)
V35 () = (’51Td,h,1ﬂC - (Vchl,hlﬁC) (MTTMC» I(j=0)+ (M:Pj_lzcl/ld,h> I(j>1)

Vit (4) = e PPSvy iy () = ma PPSCwiy and o (7) = vl PP S0
(B.6)



Vih (5) = v P75y and ~3f (5) = pl P7SCwy
W G) = (1S + (00 Ve © Vi) i) TG =0) + (gt = (ndn€) (1)) 1G = 1)
V35 (§) = (MJECMT + ww) I(j=0)+ (ﬂ},jug — (u}ug) (MTTMC)) I1(j>1)
%g) () = 771Td,h,j+1ﬂC - (V1Td,hM<) (Mr MC)
vau (4) = (VDE%) 1(j=0)+ (’jirf,j:ug - (u}uc) (u:uc)) I(j>1)
vas (j) = ((ug) +wd)TuC - (M:u4)2> I(j=0)+ <umM< (u MC) > I(j>1)
with 'y,{{] (=7) = 'ygl (j) for m,q € {1,2,3,4,5}, where of a given vector u, we have @; is the

diagonal of the matrix ((euTPj_l) ® A) P and where M,(?) is the diagonal of the matrix (A ® A) P

We show that the components of the mean of the vector process Ly ;) are given by:

= (h/A) !, for ie{1,2,3,4,5}. (B.7)

The 5 x 5 autocovariance matrices of the vector process L} are defined by

rt (k) = Cov (Lt,t-‘riu Lt+kh,t+(k+1)h) . (B.8)
We have:
h/A—1 .
kh J kh . kh .
L _ H [k _ H [ kI H (R
%q(k‘)—%q<A>+2; (1 h/A> <7nq<A+J)+7nq<A ]>>
h/A—=1h/A-1 . .
. J _ 1 H @ . H @_ .
P2 2 (s (s (S o) ol (5 s
kh . . kh .
’)’,51<A+Z+j>+’)/£{1<A—Z+])>
h/A (B.9)
/an Z%zl( 2_1>
h/A=1h/A
kh g kh . .
SR (4 (B ()

h/A

71(1 Z Tig ( —i+ 1>



h/A—1h/A " o
+ZZZ<1 h/A)(” (A z+]+1)—|—’qu<A i g+1>)
for all n,q€{1,2} and [ € {3,4,5}.
We also have

h/A—1

Vg (k) = vaié <IXL>+ Z <Z_j> <7’€{1 <IXL+j>+7’% (in_j» (B.10)

j=1

for all n,q € {3,4,5}.
C Risk-Return Trade-off

The autocovariance matrices of the vector process X;_1; are defined by
X X
T (1) = Cov (Xi—1.4, Xey1-1441) = : (C.1)

The variances of long-horizon returns and long-horizon realized variance, as well as their co-

variances, can be expressed as follows:

>

-1
r Ti—

Var [| 7 =ver || T | =Y @+ (-0 (Y0 +1Y @7 (©2)
o2 o2 I=1

t,t+h t=hyt

The covariance of future long-horizon returns with past long-horizon realized variance can be

expressed as follows:

max(m,h) min(m,h)—1
Cov (07 s Treen) =min(m,h) Y 3 (D+ Y L@ () +3 (m+h—1). (C3)
l=min(m,h) =1

The covariance of past long-horizon returns with future long-horizon realized variance can be ex-

pressed as follows:

max(m,h) min(m,h)—1
Cov (riomp 0ppyp) =min(m, b)Y v+ Y. (@) +7sm+h—1). (C4)
l=min(m,h) =1



We also have that VI and Vn, q € {1,2},
1/A-1

A0=30(5)+ X (3-9) (h(5+9)+n(5-9) ©)

j=1
D Leverage and Volatility Feedback Effects

The autocovariance matrices of the vector process Y; are defined by

Y - Y o
Yy (j) = Cov (Yi, Yirja) = Y1 (7)) 712 () . (D.1)

Y3 () 732 (9)

We recall the property Vi > 0, E; [(i1ja] = P7¢;. Let Yt(n) denotes the nth component of the
vector process Y, for example Yt(Q) =2

We now adopt the following notations, Vn, q € {1,2}:

E, [Yt(f:)A | Cka, k€ Z} = U™ ¢n,

(D.2)
B [YIAY S0 | Gk € Z) = UG .
We show that:
UD =A and U@ = (A A) + wge . (D.3)
We also show that:
UM = (AOA) +wge’
U2 — @) — (Ao A®A) + 340 (wd€T> (D.4)
UM =(AOAOAOAN) +6(AOA) G (wd€T> +3(wa @ wa)e’,
We also adopt the following notations, Vn,q € {1, 2}:
E, [K&@AHA} = <‘I/(()n))—r Pth;
(D.5)

B [Vv S s) = (809 6 vizo



We show that, Vn,q € {1,2}:

\Ilén) is the diagonal of the matrix U™ P,

\I/(()nq) is the diagonal of the matrix U9 P, (D.6)

T .
\Ilg.nq) is the diagonal of the matrix <U(")® (e <\I/(()Q)> PJ_1>>P, Vi > 1.

Finally we have that, Vn,q € {1,2}:
(D.7)

E Variance Premium

E.1 Dynamics under the Q-measure

Henceforth, dynamics under the risk-neutral (Q) measure will be represented with Q subscript.

Dynamics of the Markov-chain: We have

E;@ [Cvn] = By [My iy AR f 14 AG4A]

= B [Graha] (0 (")) &

- <Diag (elTPgt, . .,e]TVPCt)) (M © (/\2f€T>>TCt

s ((J\Zf ® (AQfeT))T ® P) ET¢

where & is the N x N? matrix such that the ith row is the vector (e; ® ei)T, where the components

of the matrix M are given by:

~ 1
mjj = exp (aij = YHei t 2’72%,2‘) [T+ 0@ (gij + 7/@ei)] 5 (E.2)

and where Aoy = 1/A1y. It follows that, under the risk-neutral measure, the Markov chain s; has

10



the one-period transition probability matrix

Pl=¢ ((M@ (AzfeT»T ® P) e

Let PRU) be the j-period transition probability matrix under the risk neutral measure, defined
by
EP [Gr1ja] = P2YG. (E.3)

We show that PR j > 1 satisfies the recursion

. . . AN T
PRG) = pRi-g <<A§Jfl) (Ag) © Ag}) ) ® P@> g7 with P = pC

J)

where )\g ¥ is the vector of j-period risk-free bond prices, defined by

Ey [Miijn] = Aijf)TQ, (E.4)
and satisfying the recursion
A = xpe (PEAGTY) with A = ayy.
Dynamics of the returns and squared returns: We adopt the following notation, ¥n € {1, 2}:
By [MygyaY (A | Gark € 2] = UM G (E5)

We show that

2

Ul — exp (A — e + éwceT> ® [(A—V(pQ VWwe ® /wq) €T> ® (1 + 4P <Q+’7 wceT))

~t((povaneT) 06 (@ +waeT)]
(E.6)

11



2
U®) = exp <A — e + éwceT> ®

[(wae™ + (A =70 Vi o Vg eT) (A= (p 0 Vi o ag)eT ) ) @

(1 40D (Q+’y WJ)) (E.7)
~2t((povae ) o (Ao vao vEe) 06 (Q+rvae")
~t((povee") o ((ro vaae ) o (Q+yvie’) 06 (Q+viee")]|.

We also adopt the following notation, Vn € {1, 2}:
-
B2 VA a) = (977) ¢ vizo (E3)
We show that ‘I’;Q(n), j > 0 satisfies the recursion

W50 = () o (2 (0 u5) =

with the initial condition
\I/(g(n) is the diagonal of the matrix (x\gfeT) ® (UQ(")P). (E.10)

E.2 Proof of Proposition 3.1

The Markov property of the model implies that
af,t = Var [ri 1] = erCt'

We have:

/A
w! G = Varg [rea] = Varg [Z Tt+jA]

j=1
1/A 1/A j—1
= Z Varg [riyinl +2 Z Z Covy (T14in, Te+5A) -
=1 =2 i=1

12



Based on previous calculations, we have:

Var: [resia] = (qf((f))T pil¢ — ((\pg))T Pﬂ'—lg)2
Covy (Fevin, Teja) = <\If§.1_1i)Tpi—1<t _ <<\IJ(()1)>T Pi—1<t> <<\p(()1))T Pj—1<t> .

It follows that

o ;/Zj ((\I/(()Z))TPj_l - ((\I/(()l)>TPj_l> . ((\Il(()l))T pj—1>)T
N 21/2221 <<q;§,1_1i)>TPi_1 B ((\Ijél)>TPi—1> o ((\Ifél))T pj_1>>T.

=2 1=1

The Markov property of the model implies

By [0} i5a) = Y] G and ER [o7, ia] = YF7¢,

and we show that:

T, = (w:Pj)T and T(]@ = <w;rPQ(j))T. (E.11)

It follows that

Ei[o7] = 1/ACt and 7 [07,41] = T?/TAQ’

which implies Eq. (24) in Proposition 3.1.

One can show that

2 @) " & 1 < 0@\’
Et [Ut,t+1] = (\If ) ZPJ Ct and E Jt t+1 == Z (‘I’]_1> Cta
J=1 J=1

which leads to Eq. (25) in Proposition 3.1.
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The entries of the figure are the first and second moments of the log price-dividend ratio, the log risk-free rate and

excess log equity returns, and finally the slope and R? for the regression of 5-year future excess log equity returns

Figure 1: Model Asset Pricing Moments: GDA 3 > 1

onto the current log price dividend ratio.

3.6

34

3.2

mean
w

2.4

22

volatility
© © o o o o
N W R o N

o
-

p—d s r—ry 5Y
0.9 " -0.05
"'l--._.
0.85 10 Neny, 0.1
S "'5
__—/ 0.8/—~ 9 —_—~—a - -0.15
~
0.75 8 M 02
/ 0.7 7 -0.25 #
LR o
=T 065 iy 6 03F
o "‘,} s \
T u N
Lo asmanee 0'6....--4“““'““ -y 50— 0.35
0.985 0.99 0.995 0.985 0.99 0.995 0.985 0.99 0.995 0.985 0.99 0.995
5 22 Y
— . = 0.4 [ lal o
===y =05 w i
wnnnn gy, = 0.6 X3
==y =07| ] 45 21 ,l /1 % R
¥ Leassssannssnsausnnns :..’ /, ‘:V,,
RN K
'i 4 20 -+ “Q' ,’ % 20 :Ql/
o s s s . ot et ) ¥/
per® ’ R
Pie W
- “,v‘,z
35 19p 1085~

0.985 0.99 0.995
P1z

0.985 0.99 0.995
P12

14

0.985 0.99 0.995
P1z

0.985 0.99 0.995
Pz



Figure 2: Model Asset Pricing Moments: GDA 3 < 1
The entries of the figure are the first and second moments of the log price-dividend ratio, the log risk-free rate and

excess log equity returns, and finally the slope and R? for the regression of 5-year future excess log equity returns

onto the current log price dividend ratio.
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Figure 3: Model Variance Premium Moments: GDA ¢ < 1
The entries of the table are the first and second moments of the options implied variance, the realized variance and

the variance premium. All measures are on a monthly basis in percentage-squared.
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Figure 4: Model Short-Run Risk-Return Trade-Offs: GDA ¢ < 1

The entries of the table are the slope coefficients as well as the coefficients of determination (R?) of the regression
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Figure 5: Model Long-Run Risk-Return Trade-Offs: GDA ¢ < 1

The entries of the table are the slope coefficients as well as the coefficients of determination (R?) of the regression
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were o7 h,+ 18 the accumulated past monthly realized variance over the last h months and r¢ ;44 is the accumulated
future monthly returns over the next A months.
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