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Abstract

We extend the analytical results for reduced form realized volatility based forecasting in Andersen, Bollerslev

and Meddahi (2004) to allow for market microstructure frictions in the observed high-frequency returns.

Our results build on the eigenfunction representation of the general stochastic volatility class of models

developed by Meddahi (2001). In addition to traditional realized volatility measures and the role of the

underlying sampling frequencies, we also explore the forecasting performance of several alternative volatility

measures designed to mitigate the impact of the microstructure noise. Our analysis is facilitated by a simple

unified quadratic form representation for all these estimators. Our results suggest that the detrimental

impact of the noise on forecast accuracy can be substantial. Moreover, the linear forecasts based on a

simple-to-implement ‘average’ (or ‘subsampled’) estimator obtained by averaging standard sparsely sampled

realized volatility measures generally performs on par with the best alternative robust measures.
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1 Introduction

In recent years, the increased availability of complete transaction and quote records for

financial assets has spurred a literature seeking to exploit this information in estimating the

current level of return volatility. Merton (1980) notes that spot volatility may be inferred

perfectly if the asset price follows a diffusion process and a continuous record of prices is

available. However, practical implementation presents significant challenges. First, we only

observe prices at intermittent and discrete points in time. This induces discretization errors

in estimates of current volatility. Second, and more importantly, the recorded prices do not

reflect direct observations of a frictionless diffusive process. Market prices are quoted on

a discrete price grid with a gap between buying and selling prices, i.e., a bid-ask spread,

and different prices may be quoted simultaneously by competing market makers due to

heterogeneous beliefs, information and inventory positions. The latter set of complications

is referred to jointly as market microstructure effects. Consequently, any observed price does

not represent a unique market price but instead an underlying ideal price confounded by an

error term reflecting the impact of market microstructure frictions, or “noise.”

The early literature accommodates microstructure noise by sampling prices relatively

sparsely to ensure that the intraday returns are approximately mean zero and uncorrelated.

As such, the realized volatility estimator, which cumulates intraday squared returns, provides

a near unbiased return variation measure; see, e.g., Andersen, Bollerslev, Diebold and

Labys (2000). Further, as stressed by Andersen and Bollerslev (1998), Andersen, Bollerslev,

Diebold and Labys (2001), and Barndorff-Nielsen and Shephard (2001), in the diffusive case,

and absent microstructure frictions, this estimator is consistent for the integrated variance

as the sampling frequency diverges. Importantly, this represents a paradigm shift towards

ex-post estimation of (average) volatility over a non-trivial interval, avoiding the pitfalls

associated with estimation of spot volatility when prices embed microstructure distortions.

However, realized volatility computed from sparsely sampled data suffers from a

potentially substantial discretization error; see Barndorff-Nielsen and Shephard (2002),

Jacod and Protter (1998), and Meddahi (2002a). An entire literature is devoted to improving

the estimator. Important contributions include the first-order autocorrelation adjustment

by Zhou (1996), the notion of an optimal sampling frequency by Bandi and Russell (2006,

2008) and Aı̈t-Sahalia, Mykland and Zhang (2005), the average and two-scale estimator of

Zhang, Mykland and Aı̈t-Sahalia (2005), the multi-scale estimator of Zhang (2006), as well

as the realized kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a).

Another key issue concerns the use of realized volatility measures for decision making.

Real-time asset allocation, derivatives pricing and risk management is conducted given

current (conditional) expectations for the return distribution over the planning horizon.

Hence, the measures of current and past volatility must be converted into useful predictors
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of future return variation. This critical step is inevitably model-dependent but the realized

volatility based forecasting literature is less developed. A number of empirical studies do

compare the performance of forecasts using realized variation measures to standard stochastic

volatility (SV) forecasts as well as option based predictions; see Andersen, Bollerslev, Diebold

and Labys (2003), Deo, Hurvich and Lu (2006), Koopman, Jungbacker and Hol (2005), and

Pong, Shackleton, Taylor and Xu (2004), among others. The realized variation forecasts

generally dominate traditional SV model forecasts based on daily data and they perform

roughly on par with the options based forecasts. In terms of a more analytic assessment,

existing results stem from a handful of simulation studies which, aside from being model

specific, typically ignore microstructure effects.1

The model-specific nature of these studies is partially circumvented by Andersen,

Bollerslev and Meddahi (henceforth ABM) (2004, 2005). They exploit the eigenfunction

stochastic volatility (ESV) framework of Meddahi (2001) in developing analytic expressions

for forecast performance spanning all SV diffusions commonly used in the literature. This

set-up delivers expressions for the optimal linear forecasts based on the history of past

realized volatility measures and allows for direct comparison as the sampling frequency of

the intraday returns varies or the measurement horizon changes.2 It also facilitates analysis

of the (artificial) deterioration in forecast performance due to the use of feasible realized

volatility measures as ex-post benchmarks for return variation in lieu of the true integrated

volatility. Nonetheless, these studies do not account for the impact of microstructure noise

on practical measurement and forecast performance. In fact, there is no obvious way to

assess this issue analytically for a broad class of models within the existing literature.3

In this paper, we extend the ABM studies by explicitly accounting for microstructure

noise in the analytic derivation of realized volatility based forecasts. The literature on this

topic is limited to concurrent work by Aı̈t-Sahalia and Mancini (2008) and Ghysels and

Sinko (2006). These papers provide complementary evidence as they resort to simulation

methods or empirical assessment in order to rank the estimators while also studying data

generating processes and forecast procedures not considered here.4 For example, Aı̈t-Sahalia

and Mancini (2008) include long memory and jump diffusions among the scenarios explored,

while Ghysels and Sinko (2006) consider nonlinear forecasting techniques based on the

MIDAS regression approach. Moreover, a preliminary review of some results, originally

derived for this project, is included in Garcia and Meddahi (2006).

1For example, Andersen, Bollerslev and Lange (1999) document substantial gains from volatility forecasts
based on high-frequency data over daily GARCH forecasts through simulations from a GARCH diffusion.

2This same approach has recently been adopted by Corradi, Distaso and Swanson (2009a, 2009b) in
analyzing the predictive inference for integrated volatility.

3Bandi, Russell and Zhu (2008) find that choosing a proper sampling frequency in constructing realized
volatility measures has important benefits for dynamic portfolio choice.

4We only became aware of these projects after initiating the current work.

2



The remainder of the paper unfolds as follows. The next section briefly introduces the

theoretical framework, including the ESV model and the definition of realized volatility,

followed by an enumeration of the analytical expressions for the requisite moments underlying

our main theoretical results. Section 3 presents the optimal linear forecasting rules for

integrated volatility when the standard realized volatility measure is contaminated by

market microstructure noise. We also quantify the impact of noise for forecast performance

and explore notions of ”optimal” sampling frequency. Moreover, we show how optimally

combining intraday squared returns in constructing integrated volatility forecasts does not

materially improve upon forecasts relying on realized volatilities computed from equally

weighted intraday squared returns. Section 4 shows that many robust realized volatility

measures, designed to mitigate the impact of microstructure noise, may be conveniently

expressed as a quadratic form of intraday returns sampled at the highest possible frequency.

This representation, in turn, facilitates the derivation of the corresponding optimal linear

integrated volatility forecasts. We find that a simple estimator, obtained by averaging

different sparsely sampled standard realized volatility measures (sometimes referred to as

a subsampled estimator), is among the best forecast performers. Moreover, the differences

among the competing realized volatility estimators can be substantial, highlighting the

potential impact of noise for practical forecast performance. For example, we show that

feasible realized volatility forecasting regressions based on the ”wrong” realized volatility

measure may, falsely, suggest near zero predictability, when in fact more than fifty percent

of the day-to-day variation in the (latent) integrated volatility is predictable. Section 5

provides concluding remarks. All main proofs are deferred to the technical Appendix.

2 Theoretical Framework

2.1 General Setup and Assumptions

We focus on a single asset traded in a liquid financial market. We assume that the sample-

path of the corresponding (latent) price process, {S∗t , 0 ≤ t}, is continuous and determined

by the stochastic differential equation (sde)

d log(S∗t ) = σtdWt, (2.1)

where Wt denotes a standard Brownian motion, and the spot volatility process σt is

predictable and has a continuous sample path. We assume the σt and Wt processes are

uncorrelated and, for convenience, we refer to the unit time interval as a day.5

5The extension to scenarios including either return-volatility correlations or a drift term in the return
process is discussed in the working paper version of this paper, ABM (2006).
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Our primary interest centers on forecasting the (latent) integrated volatility over daily

and longer inter-daily horizons. Specifically, we define the one-period integrated volatility,

IVt+1 ≡
∫ t+1

t

σ2
τdτ, (2.2)

and, for m a positive integer, the corresponding multi-period measure,

IVt+1:t+m =
m∑

j=1

IVt+j. (2.3)

In this context, IVt equals the quadratic return variation which, in turn, provides a natural

measure of the ex-post return variability; see, e.g., the discussion in Andersen, Bollerslev,

Christoffersen and Diebold (2006).6

Integrated volatility is not directly observable but, as highlighted by Andersen and

Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001, 2003), Barndorff-Nielsen

and Shephard (2001, 2002), and Meddahi (2002a), the corresponding realized volatilities

provide consistent estimates of IVt. The standard realized volatility measure is simply,

RV ∗
t (h) ≡

1/h∑
i=1

r
∗(h)2
t−1+ih, (2.4)

where 1/h is assumed to be a positive integer and

r
∗(h)
t ≡ log(S∗t )− log(S∗t−h). (2.5)

Formally, RV ∗
t (h) is uniformly consistent for IVt as h → 0, i.e., the intraday sampling

frequency goes to infinity. Moreover, ABM (2004) demonstrate that simple autoregressive

models for RV ∗
t (h) provide simple-to-implement and, for many popular SV models,

remarkably close to efficient forecasts for IVt+1 and IVt+1:t+m.7

In practice, recorded prices are invariably affected by microstructure frictions and do not

adhere to the model in (2.1) at the highest frequencies. The studies above advocate using

relatively sparse sampling to allow equation (2.1) to adequately approximate the observed

price process (see, e.g., the discussion of the so-called volatility signature plot in Andersen,

Bollerslev, Diebold and Labys, 2000, for informally selecting the value of h). More recently,

however, many studies advocate explicitly including noise terms in the price process and

then design procedures to mitigate their impact on volatility measurement.

6The integrated volatility also figures prominently in the option pricing literature; see, e.g., Hull and
White (1987) and Garcia, Lewis, Pastorello and Renault (2008).

7These theoretical results corroborate the empirical findings of Andersen, Bollerslev, Diebold and Labys
(2003), Areal and Taylor (2002), Corsi (2009), Deo, Hurvich and Lu (2006), Koopman, Jungbacker and Hol
(2005), Martens (2002), Pong, Shackleton, Taylor and Xu (2004), and Thomakos and Wang (2003), among
many others, involving estimation of reduced form forecasting models for various realized volatility series.
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We focus on the most common scenario in the literature involving i.i.d. noise. Hence,

the observed price, {St, 0 ≤ t}, is governed by the process in (2.1) plus a noise component,

log(St) = log(S∗t ) + ut, (2.6)

where ut is i.i.d., independent of the frictionless price process S∗t , with mean zero, variance Vu,

and kurtosis Ku = E[u4
t ]/V

2
u . In the illustrations below we focus on Ku = 3, corresponding

to a Gaussian noise term, but our results allow for any finite value of Ku.
8

If St, but not S∗t , is observable, the h-period returns become,

r
(h)
t ≡ log(St)− log(St−h). (2.7)

These noise contaminated returns are linked to the returns in (2.5) as,

r
(h)
t = r

∗(h)
t + e

(h)
t , (2.8)

where

e
(h)
t ≡ ut − ut−h. (2.9)

The noise induces an MA(1) error structure in observed returns. For very small h the

variance of the noise term, e
(h)
t , dominates the variance of the true return, r

∗(h)
t . In fact, as

shown by Bandi and Russell (2006, 2008) and Zhang, Mykland and Aı̈t-Sahalia (2005), the

feasible realized volatility measure based on contaminated high-frequency returns,

RVt(h) ≡
1/h∑
i=1

r
(h)2
t−1+ih (2.10)

is inconsistent for IVt and diverges to infinity for h → 0. Nonetheless, RVt(h) can still be used

to construct meaningful forecasts for IVt+1 and IVt+1:t+m for moderate values of h. Indeed,

as documented below, by balancing the impact of the noise and signal, accurate volatility

forecasting based on simple autoregressive models for RVt(h) is feasible. In addition, a

number of alternative robust realized volatility measures, explicitly designed to account

for high-frequency noise, have been proposed. We therefore also compare and contrast the

performance of reduced form forecasting models for these alternative measures to those based

on the traditional RVt(h) measure.

2.2 Eigenfunction Stochastic Volatility Models

We follow ABM (2004) in assuming that the spot volatility process belongs to the

Eigenfunction Stochastic Volatility (ESV) class introduced by Meddahi (2001). This class

of models includes most diffusive stochastic volatility models in the literature.

8In addition, the case of correlated microstructure noise is also briefly discussed in ABM (2006).
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For illustration, assume volatility is driven by a single state variable.9 The ESV

representation, with p denoting a positive, possibly infinite, integer, takes the generic form,

σ2
t =

p∑
n=0

anPn(ft), (2.11)

where the latent state variable ft is governed by a diffusion process,

dft = m(ft)dt +
√

v(ft)dW f
t , (2.12)

the Brownian motion, W f
t , is independent of Wt in equation (2.1), the an coefficients are

real numbers and the Pn(ft)’s are the eigenfunctions of the infinitesimal generator associated

with ft.
10 The eigenfunctions are orthogonal and centered at zero,

E[Pn(ft)Pj(ft)] = 0 E[Pn(ft)] = 0, (2.13)

and follow first-order autoregressive processes,

∀l > 0, E[Pn(ft+l) | fτ , τ ≤ t] = exp(−λnl)Pn(ft), (2.14)

where (−λn) denote the corresponding eigenvalues. These simplifying features render

derivation of analytic multi-step forecasts for σ2
t and for the moments of discretely sampled

returns, r
(h)
t , from the model defined by equations (2.1), (2.8), (2.11) and (2.12), feasible.

The following proposition collects the relevant results for the subsequent analysis.

Proposition 2.1 Let the discrete-time noise-contaminated and ideal returns, r
(h)
t and r

∗(h)
t ,

respectively, be determined by an ESV model and equation (2.8), with corresponding one-

and m-period integrated volatilities, IVt and IVt+1:t+m, defined by equations (2.2) and (2.3).

Then for positive integers i ≥ j ≥ k ≥ l, m ≥ 1, and h > 0,

E[r
(h)
t+ih] = E[r

∗(h)
t+ih] = 0, (2.15)

E[r
(h)2
t+ih] = V ar[r

(h)
t+ih] = V ar[r

∗(h)
t+ih] + 2Vu = a0h + 2Vu, (2.16)

Cov[r
(h)
t+ih, r

(h)
t+jh] = −Vu, for |i− j| = 1, (2.17)

E[r
(h)
t+ihr

(h)
t+jhr

(h)
t+khr

(h)
t+lh] (2.18)

9The one-factor ESV model may be extended to allow for multiple factors while maintaining the key
results discussed below; see Meddahi (2001) for further details. See also Chen, Hansen and Scheinkman
(2009) for a general approach to eigenfunction modeling for multivariate Markov processes.

10For a more detailed discussion of the properties of infinitesimal generators see, e.g., Hansen and
Scheinkman (1995) and Aı̈t-Sahalia, Hansen and Scheinkman (2008).
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= 3a2
0h

2 + 6

p∑
n=1

a2
n

λ2
n

[−1 + λnh + exp(−λnh)] + 2V 2
u (Ku + 3) + 12a0Vuh if i = j = k = l,

= −V 2
u (Ku + 3)− 3a0Vuh if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

= a2
0h

2 +

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 + V 2
u (Ku + 3) + 4a0Vuh if i = j = k + 1 = l + 1,

= a2
0h

2 +

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 exp(−λn(i− k − 1)h) + 4V 2
u + 4a0Vuh if i = j > k + 1, k = l,

= 2V 2
u if i = j + 1, j = k = l + 1,

= −2V 2
u − a0Vuh if i = j ≥ k + 1, k = l + 1, or i = j + 1, j ≥ k + 1, k = l,

= V 2
u if i = j + 1, j ≥ k + 1, k = l + 1,

= 0 otherwise.

Cov[r
(h)
t−1+m+ihr

(h)
t−1+m+jh, r

(h)
t−1+khr

(h)
t−1+lh] (2.19)

=

p∑
n=1

a2
n

λ2
n

(1− exp(−λnh))2 exp(−λn(m + (i− k − 1)h)) if m ≥ 2, i = j, k = l,

=

p∑
n=1

a2
n

λ2
n

(1− exp(−λnh))2 exp(−λn(1 + (i− k − 1)h)) if m = 1, i = j, k = l, i 6= 1, k 6= 1/h,

=

p∑
n=1

a2
n

λ2
n

(1− exp(−λnh))2 + (Ku − 1)V 2
u if m = 1, i = j, k = l, i = 1, k = 1/h,

= 0 otherwise.

Cov
[
IVt, r

(h)
t−1+ihr

(h)
t−1+jh

]
= δi,j

(
2

p∑
n=1

a2
n

λ2
n

[exp(−λnh) + λnh− 1]

+

p∑
n=1

a2
n

λ2
n

[2− exp(−λn(i− 1)h)− exp(−λn(1− ih))][1− exp(−λnh)]

)
.

(2.20)

Cov[IVt+1:t+m, r
(h)
t−1+ihr

(h)
t−1+jh]

= δi,j

(
p∑

i=1

a2
i

λ2
i

[1− exp(−λnh)][1− exp(−λnm)] exp(−λn(1− ih))

)
.

(2.21)

For illustration, we rely on a GARCH diffusion and a two-factor affine model which are

representative of the literature. We provide their sde form below, while the corresponding

ESV specifications are given in ABM (2004, 2005).

Model M1 - GARCH Diffusion The instantaneous volatility is given by,

dσ2
t = κ(θ − σ2

t )dt + σσ2
t dW

(2)
t , where κ = 0.035, θ = 0.636, ψ = 0.296. (2.22)
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Model M2 - Two-Factor Affine The instantaneous volatility is given by,

σ2
t = σ2

1,t + σ2
2,t dσ2

j,t = κj(θj − σ2
j,t)dt + ηjσj,tdW

(j+1)
t , j = 1, 2, (2.23)

where κ1 = 0.5708, θ1 = 0.3257, η1 = 0.2286, κ2 = 0.0757, θ2 = 0.1786, and η2 = 0.1096,

implying a very volatile first factor and a much more slowly mean reverting second factor.

3 Traditional Realized Volatility Based Forecasts

3.1 Optimal Linear Forecasts

ABM (2004) examine integrated volatility forecasts constructed from linear regressions of

IVt+1 and IVt+1:t+m on current and lagged values of RV ∗
t (h). However, equation (2.6)

provides a better description of real-world prices than (2.1) when data are sampled at the

highest frequencies. Hence, for small h, analytical results based on RVt(h) in lieu of RV ∗
t (h)

should help us gauge the impact of microstructure noise on forecast accuracy.

In order to derive analytical expressions for linear forecasts of IVt+1 and IVt+1:t+m based

on current and lagged RVt(h) we must compute Cov[IVt+1, RVt−l(h)], V ar[RVt(h)], and

Cov[RVt+1(h), RVt−l(h)], for l ≥ 0. To do so, note from equation (2.8) that,

RVt(h) = RV ∗
t (h) +

1/h∑
i=1

e
(h)2
t−1+ih + 2

1/h∑
i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih. (3.1)

Utilizing this decomposition the following set of results follow readily.

Proposition 3.1 Let the discrete-time noise-contaminated and ideal returns, r
(h)
t and

r
∗(h)
t be given by equations (2.8) and (2.5), with the corresponding realized and integrated

volatilities, RV ∗
t (h), RVt(h), IVt and IVt+1:t+m, defined by equations (2.4), (2.10), (2.2) and

(2.3), respectively. Then for integers m ≥ 1 and l ≥ 0, and h > 0,

Cov[IVt+1:t+m, RVt−l(h)] = Cov[IVt+1:t+m, RV ∗
t−l(h)] = Cov[IVt+1:t+m, IVt−l], (3.2)

V ar[RVt(h)] = V ar[RV ∗
t (h)] + 2V 2

u

(
2Ku

h
−Ku + 1 + 4

E[σ2
t ]

Vu

)
, (3.3)

Cov[RVt+1(h), RVt(h)] = Cov[RV ∗
t+1(h), RV ∗

t (h)] + (Ku − 1)V 2
u , (3.4)

Cov[RVt+1(h), RVt−l(h)] = Cov[RV ∗
t+1(h), RV ∗

t−l(h)]. (3.5)

The proposition expresses variances and covariances for RVt(h) via the counterparts for

RV ∗
t (h) along with the noise variance and kurtosis. The relevant expressions for terms

involving RV ∗
t (h) appear in ABM (2004). Adapting their notation, we have,

V ar[IVt+1:t+m] = 2

p∑
n=1

a2
n

λ2
n

[exp(−λnm) + λnm− 1], (3.6)
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Cov(IVt+1:t+m, IVt−l) =

p∑
n=1

a2
n

[1− exp(−λn)][1− exp(−λnm)]

λ2
n

exp(−λnl), (3.7)

V ar[RV ∗
t+1(h)] = V ar[IVt+1] +

4

h

(
a2

0h
2

2
+

p∑
n=1

a2
n

λ2
n

[exp(−λnh)− 1 + λnh]

)
, (3.8)

Cov[RV ∗
t+1(h), RV ∗

t−l(h)] = Cov[IVt+1(h), IVt−l(h)]. (3.9)

Combining these expressions with Proposition 3.1, we obtain the requisite variances and

covariances for the noise-contaminated realized volatility based forecasts.

We cannot quantify the economic losses due to the adverse impact of microstructure

noise on the precision of volatility forecasts, as the appropriate loss function depends on the

application. Instead, for compatibility with the extant literature, we focus on the R2 from the

regression of future integrated variance on a constant and the associated forecast variables.

This is equivalent to adopting a mean-squared-error (MSE) criterion for the unconditional

bias-corrected return variation forecast.11 The main limitation is that we do not consider

(unknown) time-variation in the noise distribution which would reduce the effectiveness of

the (unconditional) bias-correction. As such, our analysis provides only a first step towards

understanding the impact of noise on volatility forecasting.

The R2 from the Mincer-Zarnowitz style regression of IVt+1 onto a constant and the

(l + 1)× 1 vector, (RVt(h), RVt−1(h), ..., RVt−l(h)), l ≥ 0, may be succinctly expressed as,

R2(IVt+1, RVt(h), l) =

C(IVt+1, RVt(h), l)>(M(RVt(h), l))−1 C(IVt+1, RVt(h), l)/V ar[IVt].
(3.10)

where the typical elements in the (l+1)×1 vector C(IVt+1, RVt(h), l) and the (l+1)×(l+1)

matrix M(RVt(h), l) are given by, respectively,

C(IVt+1, RVt(h), l)i = Cov(IVt+1, RVt−i+1(h)) (3.11)

and,

M(RVt(h), l))ij = Cov(RVt(h), RVt+i−j(h)). (3.12)

The corresponding R2 for the longer-horizon integrated volatility forecasts is obtained by

replacing IVt+1 with IVt+1:t+m in the formulas immediately above.

11Patton (2009) provides an interesting discussion concerning the choice of loss function for assessing the
performance of alternative volatility forecasts when the latent volatility is observed with noise.
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3.2 Quantifying the Impact of Market Microstructure Noise

The impact of microstructure noise is related to the size of the noise variance relative to the

daily return variation, conveniently captured by the noise-to-signal ratio, or γ ≡ Vu/E[IVt].

Hansen and Lunde (2006) estimate this factor for thirty actively traded stocks during the

year 2000 and find values around 0.1%, with most slightly lower. The magnitude of the noise

has declined in recent years and is now much lower for many stocks. Consequently, we use

0.1% as the benchmark for a realistic, if not inflated, value for γ. We also explore the impact

of a significantly higher noise-to-signal ratio of 0.5%.

Table 1 reports the population R2 in equation (3.10) from the regression of future

integrated volatility on various realized measures across different forecast horizons, data

generating processes (models), levels of microstructure noise, and sampling frequencies. As

reference we include, in row one, the R2’s for the optimal (infeasible) forecasts based on

the exact value of the (latent) volatility state variable(s). The next two rows concern the

(infeasible) forecasts based on past daily (latent) integrated volatility and potentially an

additional four lags, or a full week, of daily integrated volatilities. The next eleven rows

report R2’s for realized volatility based forecasts assuming no noise and sampling frequencies

spanning h = 1/1444 to h = 1, representing 1-minute to daily returns in a 24-hour market,

and we refer to them accordingly.12 Alternatively, the h = 1/1440 frequency reflect 15-second

sampling over a 6-hour equity trading day.

Row one reveals that Model 1 implies a higher degree of predictability than Model 2.

The latter embodies a second, less persistent, factor which reduces the serial correlation in

volatility. In rows two and three, we find only a small loss of predictability for forecasts

based on the last day’s integrated volatility rather than spot volatility, while exploiting a

full week of daily integrated volatilities is only marginally helpful.

Table 1 to be inserted here.

We now consider realized volatility based forecasts in the ideal case without noise. Rows

four to fourteen reveal only a small drop in predictive power for forecasts using measures

constructed from 1- and 5-minute returns. At lower sampling frequencies, where the return

variation measures are less precise, the addition of lagged volatility measures becomes

progressively more valuable. The results for twenty daily lags (19 extra) in row fourteen

mimic the performance of a well-specified GARCH model, as detailed in ABM (2004).

Finally, turning to the new results for forecasts based on realized volatilities constructed

from noisy returns, we first observe only a mild degradation in performance for the realistic

case with γ = 0.1%. However, for the higher noise level in the bottom part of the table,

performance deteriorates more sharply and using lagged volatility measures is now critical in

12The figures in the first fourteen rows of Table 1 are extracted from Tables 1 through 6 of ABM (2004).
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boosting the predictive power. Secondly, as anticipated, it is not optimal to estimate realized

volatility with ultra-high frequency returns. At the moderate noise level, the performance

is better for 5-minute rather than 1-minute sampling, and as γ grows further, sampling at

the 15- and 30-minute levels produces the highest coherence between forecasts and future

realizations, because noise increasingly dominates sampling variability as the main source

of variation in the realized measures. Further evidence of the benefit from sparse sampling

in this context is obtained by comparing the decline in predictability from the γ = 0.1% to

the γ = 0.5% scenario for the 5-minute (h = 1/288) versus 30-minute (h = 1/48) sampling

frequency. One finds a drop in the R2 from moderate to large noise for h = 1/288 at the

one-day forecast horizon in Model 1 of about 91% to 72% (92% to 84% if lags are exploited)

compared to a drop for h = 1/48 of about 82% to 75% (88% to 85% with lags). Thirdly, the

importance of exploiting lagged realized volatility measures increases sharply with the noise

level. Even for γ = 0.1%, the measures based on 30-minute returns are quite competitive

with those using 5-minute sampling once the lagged volatility measures are exploited. In fact,

for the higher noise level, the 30-minute based measures dominate the 5-minute based ones

in all scenarios. Hence, within the class of linear realized volatility based forecast procedures,

30-minute sampling appears to provide a robust and fairly efficient choice as long as past

daily realized measures are also exploited.

3.3 Optimal Sampling Frequency

The findings in Section 3.2 suggest exploring the notion of an optimal sampling frequency for

RVt(h) in terms of maximizing the R2 for the linear forecasting regressions or, equivalently,

minimizing the MSE of the forecasts. This section considers two alternative proposals for

choosing h. We focus on one-step-ahead forecasts, but the results are readily extended to

longer horizons, as exemplified by our numerical calculations below.

One approach follows Bandi and Russell (2006, 2008) and Zhang, Mykland and Aı̈t-

Sahalia (2005) who show that the optimal sampling frequency, in terms of minimizing the

MSE of RVt(h) conditional on the sample path of volatility, may be approximated by,

h∗t ≈ (IQt/(4V
2
u ))−1/3, (3.13)

where the integrated quarticity is defined by,

IQt =

∫ t

t−1

σ4
τdτ. (3.14)

However, instead of attempting to estimate the optimal frequency on a period-by-period

basis, we follow Bandi and Russell (2006) in replacing the hard-to-estimate one-period

integrated quarticity by its unconditional expectation. Hence, we consider,

h1 = (E[IQt]/(4V
2
u ))−1/3. (3.15)
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This unconditional counterpart to h∗t is fairly easy to estimate and implement in practice.

We also consider the frequency which minimizes the variance of RVt(h). For motivation,

note that the R2 from the regression of IVt+1 on a constant and RVt(h) is,

R2 =
Cov[IVt+1, RVt(h)]2

V ar[IVt]V ar[RVt(h)]
=

Cov[IVt+1, IVt]
2

V ar[IVt]V ar[RVt(h)]
(3.16)

where the last equality follows from Proposition 3.1. Hence, maximizing this R2 is

tantamount to minimizing the unconditional variance of V ar[RVt(h)], also noted by

Ghysels and Sinko (2006). To minimize this variance, we follow Barndorff-Nielsen and

Shephard (2002), and Meddahi (2002a), in approximating the unconditional variance of

the corresponding non-contaminated realized volatility measure by,

V ar[RV ∗
t (h)] ≈ V ar[IVt] + 2hE[IQt]. (3.17)

Substituting this expression into the equation for V ar[RVt(h)] in equation (3.3) yields,

V ar[RV ∗
t (h)] ≈ V ar[IVt] + 2hE[IQt] + 2V 2

u

(
2Ku

h
−Ku + 1 + 4

E[σ2
t ]

Vu

)
. (3.18)

Minimizing with respect to h produces an alternative candidate sampling frequency,

h2 = (E[IQt]/(2V
2
u Ku))

−1/2. (3.19)

The relative size of h1 versus h2 obviously depends on the magnitude and distribution of the

noise term as well as the volatility-of-volatility, or E[IQt]. Importantly, however, both h1

and h2 may be estimated in a model-free fashion by using the higher order sample moments

of RVt(h) based on very finely sampled returns, or small h values, to assess Vu and Ku, along

with the use of lower frequency returns to estimate E[IQt]; see Bandi and Russell (2006,

2008) for further discussion and empirical analysis along these lines.

Table 2 to be inserted here.

Table 2 reports approximate optimal sampling frequencies, as represented by h1 and h2, for

the scenarios in Table 1, along with the resulting population R2’s. Since h2 directly optimizes

an approximation of this quantity, we would expect the associated forecasts to outperform

those based on h1. Nonetheless, the size of the discrepancy is noteworthy. In some cases,

the R2 increases by over 25% and there are always a few percent to be gained by adhering

to h2 rather than h1. The reason is that h2 invariably prescribes more frequent sampling

than h1. This finding reflects the pronounced right skew in the distribution of integrated

quarticity. Large IQt values are associated with high optimal sampling frequencies to offset

the increase in discretization error. Hence, averaging the optimal frequency across days, as

in the derivation of h1, ignores the disproportional losses suffered on the most volatile days.

12



In contrast, h2 minimizes the average squared error and thus adjusts the sampling frequency

to accommodate the more extreme days.

Of course, if the cost of a fixed sampling frequency is high, one may seek to vary the

sampling frequency based on an initial estimate of the integrated quarticity. However,

comparison of the forecast performance associated with h2 and moderate noise in Table

2 with that stemming from forecasts derived from realized volatility in the absence of noise

in rows 4-7 in Table 1 shows that the loss is quite small. Hence, for these models, it seems

more important to pin down a sensible sampling frequency than to vary the intraday return

interval from day to day in response to the varying precision of the volatility measure. This

is obviously a comforting finding from a practical perspective.13

3.4 Optimally Combining Intra Day Returns

The basic realized volatility estimator utilizes a flat weighting scheme in combining the

information in intraday returns. This is primarily motivated by the consistency property of

the measure for the underlying return variation. Once noise is present, the basic measures

become inconsistent even if the sparse estimators only suffer from minor finite sample

biases. Moreover, inconsistent measures can provide a sensible basis for predicting the future

return variation via forecast regressions which adjust for any systematic (unconditional)

bias through the inclusion of a constant term. The main issue for forecast regressors is not

their bias but their ability to capture variation in current realized volatility which typically

translates into improved predictive performance. This suggests that we may want to loosen

the link between the regressors and realized volatility measures. A natural step is to have

the daily return variation proxy be a more flexible function of the intraday squared returns.

To this end, we next contrast the predictive ability of optimally combined, or weighted,

intraday squared returns to the usual realized volatility measure. The former may, for an

optimal choice of the α(h) and βi(h) coefficients, be represented by the regression

IVt+1 = α(h) +

1/h∑
i=1

βi(h)(r
(h)
t−1+ih)

2 + ηt+1(h). (3.20)

This regression is difficult to implement in practice due to the large number of parameters,

1+1/h, but we can readily compute its population counterpart within the ESV setting using

Proposition 2.1. The corresponding numerical results are presented in Table 3.

Comparing the results to those in the previous tables, the minor gains obtained by optimal

intraday weighting are striking. Even if the improvements are slightly larger for Model 2 than

13As indicated previously, one major caveat is that time-variation in the noise distribution, which we do
not consider, will render bias-correction less effective. This is most critical for procedures requiring frequent
sampling which tend to lower sampling variation but increase bias. Hence, this effect may work to offset
some of the advantages of h2 relative to h1. Future work should further explore this issue.
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Model 1, they will inevitably be negated, in practice, by the need to estimate the weighting

scheme a priori. Of course, the flat weighting of the RV estimator strikes a sensible balance

between efficiency and parsimony. However, the above representations only allow for linear

weighting of the intraday squared returns. Many modern noise robust estimators involve

nonlinear functions of the intraday returns. We explore the forecast potential of some of

these estimators below.14

Table 3 to be inserted here.

4 Robust Realized Volatility Based Forecasts

This section investigates to what extent reduced form forecast models based on noise-robust

realized variation estimators improve on forecasts constructed from traditional realized

volatility measures. In particular, we consider the average and two-scale estimators of Zhang,

Mykland and Aı̈t-Sahalia (2005), the first-order autocovariance adjusted estimator of Zhou

(1996), and the realized kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a).

4.1 Quadratic Form Representation

We first develop a unified quadratic form representation for the alternative estimators.15 Let

h denote the shortest practical intra-day interval such that 1/h is an integer. As before, we

let 1/h denote the actual number of equally spaced returns used to construct a (sparsely

sampled) realized volatility estimator. It is convenient to express each such measure as a

quadratic function of the 1/h× 1 vector of the highest frequency returns. That is,

RMt(h) =
∑

1≤i,j≤1/h

qijr
(h)
t−1+ihr

(h)
t−1+jh = Rt(h)> Q Rt(h). (4.1)

where the (1/h× 1) vector Rt(h) is defined by,

Rt(h) = (r
(h)
t−1+h, r

(h)
t−1+2h, ..., r

(h)
t )>. (4.2)

In order to study the interaction between these alternative volatility measures and their

relation to the underlying integrated variance, we need analytical expressions for the

corresponding first and second moments. The next proposition delivers these quantities.

Proposition 4.1 Let the noise-contaminated returns be given by equations (2.1) and (2.8),

let RM t(h) and RM t(h) denote two realized volatility measures defined via equation (4.1)

14The MIDAS scheme of Ghysels, Santa-Clara and Valkanov (2006) also produces regression-based
volatility forecasts using nonlinear functions of lagged intraday absolute returns, but this approach generally
does not fall within to the analytical ESV framework.

15Sun (2006) introduced the same quadratic representation independently from this paper.
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with corresponding quadratic form weights qij and qij, and let the integrated volatilities, IVt

and IVt+1:t+m, be defined by equations (2.2)-(2.3). Then,

E[RMt(h)] =
∑

1≤i,j≤1/h

qijE[r
(h)
t−1+ihr

(h)
t−1+jh], (4.3)

E[RMt(h)2] =
∑

1≤i,j,k,l≤1/h

qijqklE[r
(h)
t−1+ihr

(h)
t−1+jhr

(h)
t−1+khr

(h)
t−1+lh], (4.4)

E[RMt(h)RM t(h)] =
∑

1≤i,j,k,l≤1/h

qijqklE[r
(h)
t−1+ihr

(h)
t−1+jhr

(h)
t−1+khr

(h)
t−1+lh], (4.5)

E[IVtRMt(h)] =
∑

1≤i,j≤1/h

qijE[IVtr
(h)
t−1+ihr

(h)
t−1+jh], (4.6)

E[IVt+1:t+mRMt(h)] =
∑

1≤i,j≤1/h

qijE[IVt+1:t+mr
(h)
t−1+ihr

(h)
t−1+jh]. (4.7)

Proof: Follows directly from the quadratic form representation.

For the ESV model class, closed-form expressions for the right-hand-side of the equations in

Proposition 4.1 follow from Proposition 2.1.

4.2 Robust RV Estimators

4.2.1 The “all” RV Estimator

The “all” estimator equals the standard realized volatility applied to the maximal sampling

frequency. The quadratic form representation is simply,

RV all
t (h) ≡ RVt(h) =

1/h∑
i=1

r
(h)2
t−1+ih = Rt(h)> Qall(h) Rt(h), (4.8)

where

qall
ij (h) = 1 for i = j and qall

ij (h) = 0 when i 6= j. (4.9)

This measure is not noise-robust so it is a poor estimator of IVt for small h. However, it

plays an important role in defining some of the estimators below.

4.2.2 The Sparse RV Estimator

The sparse estimator equals the usual RVt(h) measure, except that h is a multiple of h; i.e.,

h = hnh for nh a positive integer. The quadratic representation takes the form,

RV sparse
t (h) =

1/h∑
i=1

r
(h)2
t−1+ih = Rt(h)> Qsparse(h) Rt(h), (4.10)
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where

qsparse
ij (h) = 1 for i = j, or for i 6= j, (s− 1)nh + 1 ≤ i, j ≤ snh, s = 1, ..., 1/h,

= 0 otherwise.
(4.11)

For a larger h, this estimator is more noise robust but will be subject to increased sampling

variability. It also serves as a building block for more desirable estimators.

4.2.3 The Average RV Estimator

Zhang, Mykland and Aı̈t-Sahalia (2005) define the average (or “subsampled”) RV estimator

as the mean of several sparse estimators. In particular, define the nh distinct sparse

estimators initiated respectively at 0, h, 2h, ... (nh − 1)h, through the equation,

RV sparse
t (h, k) =

Nk∑
i=1

(r
(h)
t−1+kh+ih)

2, k = 0, ..., nh − 1, (4.12)

where, as before, h = hnh, and

Nk =
1

h
if k = 0, Nk =

1

h
− 1 if k = 1, ..., nh − 1. (4.13)

In terms of the quadratic form representation we have,

RV sparse
t (h, k) =

Nk∑
i=1

(r
(h)
t−1+kh+ih)

2 = Rt(h)> Qsparse(h, k) Rt(h),

where

qsparse
ij (h, k) = 1 for k + 1 ≤ i = j ≤ Nk + k,

= 1 for i 6= j, (s− 1)nh + 1 + k ≤ i, j ≤ snh + k, s = 1, ..., Nk/nh,

= 0 otherwise.

(4.14)

The average estimator is now simply defined by the mean of these sparse estimators,

RV average
t (h) =

1

nh

nh−1∑

k=0

RV sparse
t (h, k) = Rt(h)> Qsparse(h, k) Rt(h), (4.15)

where

qaverage
ij (h) =

1

nh

nh−1∑

k=0

qsparse
ij (h, k). (4.16)

Whereas the sparse estimator only uses a small subset of the available data, the average

estimator exploits more of the data by extending the estimator to each subgrid partition

while retaining the associated robustness to noise for appropriately large values of h.
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4.2.4 The (Adjusted) Two-Scale RV Estimator

The two-scale estimator of Zhang, Mykland and Aı̈t-Sahalia (2005) is obtained by combining

the RV average
t (h) and RV all

t (h) estimators. Specifically, let

n̄ ≡ 1

nh

nh−1∑

k=0

Nk =
1

nh

(
1

h
+ (nh − 1)

(
1

h
− 1

))
=

1

h
− 1 +

h

h
. (4.17)

The (finite-sample adjusted) two-scale estimator may then be expressed as,

RV TS
t (h) = (1− n̄h)−1 (

RV average
t (h)− n̄hRV all

t

)
= Rt(h)> QTS(h) Rt(h), (4.18)

where

qTS
ij (h) = (1− n̄h)−1 (qaverage

ij (h)− n̄hqall
ij (h)). (4.19)

The initial scaling factor provides a simple finite-sample adjustment reflecting the number

of terms entering into each of the two summands defining the two-scale estimator.

Unlike the previously defined estimators, the two-scale measure is consistent for IVt as

h → 0 under the noise assumptions in Section 2. Zhang (2006) analyzes related, but more

elaborate, multi-scale estimators. We do not consider these extensions here.

4.2.5 Zhou’s RV Estimator

The estimator originally proposed by Zhou (1996) essentially involves a correction for

first-order serial correlation in the high-frequency returns, leading to an unbiased but still

inconsistent estimator of the integrated variance. Specifically,

RV Zhou
t (h) =

1/h∑
i=1

r
(h)2
t−1+ih +

1/h∑
i=2

r
(h)
t−1+ihr

(h)
t−1+(i−1)h +

1/h−1∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i+1)h

= Rt(h)> QZhou(h) Rt(h),

(4.20)

where

qZhou
ij (h) = 1 for i = j, or for i 6= j, (s− 1)nh + 1 ≤ i, j ≤ snh, s = 1, ..., 1/h,

= 1 for (s− 1)nh + 1 ≤ i, j∗ ≤ snh, j
∗ = j ± nh, s = 1, ..., 1/h,

= 0 otherwise.

(4.21)

Upon defining the estimator at the highest frequency h, the expressions simplify, as

qZhou
ij (h) = 1 if |i − j| ≤ 1, and qZhou

ij (h) = 0 otherwise. This is the version of the

estimator used in deriving the numerical results below. This estimator has also previously

been analyzed by Zumbach, Corsi and Trapletti (2002).
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4.2.6 Realized Kernels

The Zhou estimator is a special case of the realized kernels developed by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008a). Letting K(·) and L denote the kernel and bandwidth,

the realized kernel RV estimator is given by,

RV Kernel
t (K(·), L) = RVt(h) +

L∑

l=1

K

(
l − 1

L

)
CRVt(l, h), (4.22)

where

CRVt(l, h) =

1/h∑

i=1+l

r
(h)
t−1+ihr

(h)
t−1+(i−l)h +

1/h−l∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i+l)h (4.23)

This estimator is readily expressed in quadratic form as,

RV Kernel
t (K(·), L) = Rt(h)> QKernel(K(·), L) Rt(h), (4.24)

where

qKernel
ij (K(·), L) = 1 for i = j

= K

(
l − 1

L

)
for |i− j| = l, l ≤ L,

= 0 otherwise.

(4.25)

In the specific calculations below, we use the modified Tukey-Hanning kernel of order two

advocated by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a),16

K(x) = sin2(π(1− x)2/2). (4.26)

We do not use the bandwidth selection procedure of Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008a) in our benchmark kernel RV estimator but fix L = h/h− 1. However, our

framework allows for direct comparison of the estimators across bandwidth choices and we

explore the performance for a range of reasonable values in Section 4.4.

4.3 Distribution of Robust RV Measures

The analytical solution for relevant cross-moments within the ESV class facilitates

comparison of the properties of the estimators, even in the presence of noise.

16The estimator we implement differs slightly from theirs as, in contrast to equation (4.23), they add returns
outside the [t− 1, t] time interval to avoid certain end-effects. Since our analysis focuses on forecasting, we
want to avoid including any returns beyond time t in the realized volatility measure for the [t− 1, t] interval.
This renders the estimator inconsistent although we, a priori, expect the quantitative impact to be minor.
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Table 4 reports the mean, variance and mean-squared-error for alternative measures of

integrated variance. In principle, the “all” estimator employs the highest possible frequency.

We fix h = 1/1440, or 1-minute (15-second) sampling in a 24-hour (6-hour) market, as

the shortest practical return interval. As predicted, the “all” estimator is severely inflated

by microstructure noise. Under moderate noise, the estimator is, on average, almost four

times as large as the underlying integrated variance while this factor rises to ten at the

larger noise level, so the measure is useless as a direct estimator for the integrated variance.

Moving to the sparse estimator based on h = 1/288, or 5-minute sampling in a 24-hour

market, the upward bias remains large although it has dropped sharply relative to the “all”

estimator. Reducing the sampling frequency further produces an even less biased estimator

but we retain this relatively high frequency to explore more cleanly the implications of the

noise-induced bias for the predictive ability of these measures compared to the more robust

ones discussed below. The last estimator constructed directly from the standard realized

volatility measure is the average estimator appearing in the third row. The averaging reduces

the sampling variability, and in turn provides an improvement in the MSE compared to the

sparse estimator.

The noise-robust estimators are all virtually unbiased for both models and noise levels,

even if we have not optimized the sampling frequency or bandwidth but keep them fixed

across all model designs.17 For Model 1 and moderate noise, the estimators have close to

identical sampling variability, but for all other scenarios the average, two-scale and kernel

measures display the lowest variability. In particular, the Zhou estimator is not competitive

in this regard even though it is designed explicitly for this type of noise structure.

Table 4 to be inserted here.

Table 5 provides the correlations among the alternative estimators as well as the actual

integrated variance. This provides a first impression of the potential forecast performance, as

high correlation with the current volatility level, everything else equal, should translate into

a good prediction. Overall, the measures separate into two distinct groups. The “all”, sparse

and Zhou estimators fail to match the performance of the remainder in terms of coherence

with the ideal integrated variance measure. The average estimator performs well in spite

of its sizeable bias, while the nearly unbiased Zhou estimator is handicapped by its larger

sampling variability and fails dramatically in the more noisy scenarios. Finally, we stress

that the TS and kernel estimators are loosely calibrated to Model 2 with moderate noise, so

the entries for these estimators across the other scenarios are less telling.

Table 5 to be inserted here.

17As illustrated in Section 4.4 below, the frequency and bandwidth are close to optimal for the two-scale
and kernel estimator, respectively, in the empirically relevant scenario of Model 2 and moderate noise.
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We have also explored the population autocorrelation of the alternative estimators.

Intuitively, the less noisy estimators manage to correlate better with the integrated variance

and they may thus be expected to inherit the strong serial dependence present in the daily

integrated variance series. This is exactly what we find: the ranking in terms of high

correlation with the integrated variance measure in Table 5 is preserved when ranking the

estimators in terms of serial dependence. These findings are tabulated in ABM (2006).

4.4 True Forecast Performance of Robust RV Measures

We now compare the potential performance of linear forecasts constructed from the

alternative return variation measures. In a direct extension of the findings for the regular

RV measures in Table 1, we compute the true population R2’s by combining results from

Propositions 2.1 and 4.1. Given the wide array of alternatives, we focus on only one version

of each estimator. Hence, the estimators are not calibrated optimally for each scenario but

are, at best, designed to perform well for a couple of the relevant cases. Nonetheless, the

results are sufficiently impressive that further improvements are unlike to alter the qualitative

conclusions.

Table 6 to be inserted here.

Table 6 provides results for daily, weekly and monthly forecast horizons. As expected, the

measures most highly correlated with the true return variation also provide the best basis for

forecasts. Hence, forecasts generated by the average estimator are uniformly best, although

barely distinguishable from those based on the two-scale or kernel estimators when these are

well calibrated. Moreover, the fall-off for the remaining forecasts is not dramatic under the

realistic moderate noise setting. In fact, compared with the feasible estimators under ideal

noise-free conditions, provided in Table 1, the performance of the entire range of forecasts is

quite impressive. However, the picture changes for the noisier scenario where sizeable gains

are attained by adhering to forecasts based on estimators which succeed in dampening the

impact of the noise on the sampling variability.18 Overall, the evidence suggests that the

comparatively simple average (or “subsampled”) RV estimator is an excellent starting point

for practical volatility forecasting.19

We have informally stressed the importance of low sampling variability for forecast

performance across the alternative realized variation measures. This intuition may be

18In this scenario, the sparse estimator performs better at a lower frequency, say h = 1/96, and if lagged
measures are used to form the forecasts. However, a lower sampling frequency increases sampling variability
so the approach cannot match the more elaborate noise-robust procedures.

19The superior performance of the average estimator may be an artifact of the i.i.d. noise assumption
although we expect it also to perform well for dependent noise. It is possible to accommodate more complex
noise structures within a tractable ESV framework, as discussed in ABM (2006), but the lack of consensus
regarding the dependence structure in the noise process is an obstacle for broadly exploring the issue.
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formalized through an extension of the result underlying equation (3.16).

Proposition 4.2 Let the discrete-time noise contaminated returns be determined by an ESV

model and the relationship in equation (2.8). Let RM t(h) denote a realized volatility measure

as defined in equation (4.1) with corresponding quadratic form weights qij such that

∀i, 1 ≤ i ≤ 1/h, qii = 1. (4.27)

Then,

Cov[IVt+1, RMt(h)] = Cov[IVt+1, IVt]. (4.28)

Consequently, maximizing the R2 from the regression of IVt+1 on a constant and a RMt(h)

measure of the form (4.1) under the restriction (4.27) is tantamount to minimize the variance

of the measure RMt(h). The restriction (4.27) holds for the sparse and Zhou estimators, and

for any kernel estimator including the non-flat top kernels introduced by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008b). It is not satisfied for the average and two scale

estimators at the edges of the trading day, although it will be close to valid for these as well

in most circumstances.

Finally, we explore the importance of calibrating the sampling frequency and bandwidth

for the average, TS and kernel estimators. Table 7 reports the population R2 across model

designs for bandwidths spanning 1 to 14. Evidently, higher noise levels and less persistent

volatility processes (Model 2) tend to increase the optimal bandwidth. Moreover, there is a

distinct pattern to the degree of predictability as the bandwidth rises: performance improves,

then levels off and declines. Only for the kernels in the high noise scenario do we not observe

a maximum degree of predictability, as this noise level is best accommodated with a very

conservative bandwidth. Note also that a bandwidth of four, as in Tables 4-6, is close to

optimal for all the estimators in the more realistic scenario of Model 2 and moderate noise.

Table 7 to be inserted here.

4.5 Feasible Forecasting Performance of Robust RV Measures

The integrated volatility regressand of the Mincer-Zarnowitz regressions in Section 4.4 is

latent. In practice it must be replaced by some realized volatility measure, as in,

RM t+1:t+m(h) = a + bRMt(h) + ηt+m, (4.29)

where RM t(h) and RM t(h) denote possibly different realized measures. The associated

regression R2 involves a covariance term which we have not directly considered previously,

R2 =
(Cov[RM t+1:t+m(h), RMt(h)])2

V ar[RM t+1:t+m(h)]V ar[RMt(h)]
. (4.30)

The following proposition provides closed form expressions for the requisite covariance term.
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Proposition 4.3 Let the discrete-time noise contaminated returns be determined by an ESV

model and the relationship in equation (2.8). Let RM t(h) and RM t(h) denote two realized

volatility measures as defined in equation (4.1) with corresponding quadratic form weights qij

and qij, respectively. Then,

Cov[RM t+1(h), RMt(h)] =

1/h∑
i=1

1/h∑

k=1

qiiqkk

(
p∑

n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(1 + (i− k − 1)h))

)

+ q11qh−1h−1(Ku − 1)V 2
u ,

(4.31)

and for m > 1,

Cov[RM t+m(h), RMt(h)] =

1/h∑
i=1

1/h∑

k=1

qiiqkk

(
p∑

n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(m + (i− k − 1)h))

)
.

(4.32)

Table 8 to be inserted here.

Table 8 provides feasible performance measures that, ideally, may be obtained from the

forecast procedures discussed in Section 4.4. We only report figures for the one-step-ahead

forecasts due to the increased number of cross-comparisons.20 As before, the relative rankings

are preserved over the longer horizons. Table 8 conveys the now familiar picture. The average

estimator dominates uniformly both as the basis for forecasts and as the proxy for the future

realized return variation. Moreover, the prior rankings are preserved everywhere across all

the model designs. It is evident that using a precise ex-post estimator for the integrated

variance improves the measured degree of predictability and allows the regressions to better

convey the true relationship as captured in Table 7. For example, consider Model 2 and

γ = 0.5%. Using the average estimator as the basis for the forecast and as the ex-post proxy

for future return variation realizations, the R2 is 41% compared to the actual R2 of about

53% in Table 7. In contrast, exploiting the Zhou estimator in both capacities results in

an R2 below 4%. Although the figures reflect the specific model design, it exemplifies how

the issue of observed versus true underlying predictability is crucially important in properly

interpreting empirical studies in this area.21

20Also note that for the feasible regressions analyzed here minimizing the variance of the explanatory robust
measure is not equivalent to maximizing the R2 in the Mincer-Zarnowitz regression, as the numerator in the
R2 will also depend on h, and Cov[IVt+1, RMt(h)] 6= Cov[IVt+1, IVt] for qii 6= 1.

21As previously noted, ABM (2005) provide a technique for formally converting the observed degree of
predictability into an estimate of the higher true predictability through a fairly simple procedure.
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5 Conclusion

This paper extends existing analytic methods for construction and assessment of volatility

forecasts for diffusion models to the important case of market microstructure noise. The

procedures are valid within the ESV model class, which includes most popular volatility

diffusions, and may be adapted to accommodate other empirically relevant features. We

apply the techniques to a few representative specifications for which we compare the

performance of feasible linear forecasts constructed from alternative realized variation

measures in the presence of noise to those based on optimal (infeasible) forecasts. We

find it feasible to construct fairly precise forecasts but many aspects of the implementation

require careful examination of the underlying market structure and data availability in order

to design effective procedures.

Given the vast diversity in potential models, sampling frequencies, levels of microstructure

noise, realized variation estimators and forecasting schemes, the costs associated with

comprehensive simulation studies are formidable. Instead, the ESV analytical tools

developed here enable us to study the relevant issues succinctly across alternative designs

within a coherent framework, thus providing a guide for general performance and robustness.

As such, we expect the approach to provide additional useful insights in future work

concerning the design of alternative return variation measures and their application in the

context of volatility forecasting.

Appendix: Technical Proofs
Proof of Proposition 2.1. In the absence of any drift, E[r∗(h)

t+ih] = 0 and V ar[r∗(h)
t+ih] = a0h (see, e.g.,

Meddahi, 2002b). Now given the i.i.d. assumption for the noise ut, (2.15) and (2.16) follows readily from
(2.8). Likewise, the non-contaminated returns r

∗(h)
t+ih are uncorrelated (see, e.g., Meddahi, 2002b), while e

(h)
t

is an MA(1) process. Hence, the observed returns r
(h)
t+ih will also follow an MA(1) process with

Cov[r∗(h)
t+ih, r

∗(h)
t+(i−1)h] = Cov[e(h)

t+ih, e
(h)
t+(i−1)h] = −V ar[ut] = −Vu,

i.e., (2.17). We will now prove (2.18). As a short-hand notation, let ri, r∗i , and ei refer to r
(h)
t+ih, r

∗(h)
t+ih, and

e
(h)
t+ih. We then have

rirjrkrl = (r∗i + ei)(r∗j + ej)(r∗k + ek)(r∗l + el)

= r∗i r∗j r∗kr∗l + r∗i r∗j ekr∗l + r∗i r∗j r∗kel + r∗i r∗j ekel + r∗i ejr
∗
kr∗l + r∗i ejekr∗l + r∗i ejr

∗
kel + r∗i ejekel

+ eir
∗
j r∗kr∗l + eir

∗
j ekr∗l + eir

∗
j r∗kel + eir

∗
j ekel + eiejr

∗
kr∗l + eiejekr∗l + eiejr

∗
kel + eiejekel.

The returns are independent with the noise. In addition, the mean of the noise and returns are zero. This
implies that quantities like E[r∗i r∗j ekr∗l ] and E[r∗i ejekel] equal zero. Therefore,

E[rirjrkrl] = E[r∗i r∗j r∗kr∗l ] + E[r∗i r∗j ]E[ekel] + E[r∗i r∗l ]E[ejek] + E[r∗i r∗k]E[ejel]

+ E[eiek]E[r∗j r∗l ] + E[eiel]E[r∗j r∗k] + E[eiej ]E[r∗kr∗l ] + E[eiejekel].
(A.1)
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We will now compute the elements that appear in (A.1). We start with the first term. Given the path of
the volatility, the returns are independent. Therefore (see, e.g., Meddahi, 2002b),

E[r∗i r∗j r∗kr∗l ] = E[(r∗i )4] if i = j = k = l,

= Cov[(r∗(h)
t−1+ih)2, (r∗(h)

t−1+kh)2] + (E[(r∗i )2])2 if i = j > k = l,

= 0 otherwise.

Equations (3.7) and (3.10) in Meddahi (2002b) now imply

E[r∗i r∗j r∗kr∗l ] = 3a2
0h

2 + 6
p∑

i=1

a2
i

λ2
i

[−1 + λih + exp(−λih)] if i = j = k = l,

=
p∑

n=1

a2
n

λ2
n

[1− exp(−λkh)]2 exp(−λn(i− k − 1)h) + a2
0h

2 if i = j > k = l,

= 0 otherwise.

(A.2)

To compute the last term in (A.1) note that

eiejekel = (ui − ui−1)(uj − uj−1)(uk − uk−1)(ul − ul−1) = uiujukul − uiujukul−1 − uiujuk−1ul + uiujuk−1ul−1

− uiuj−1ukul + uiuj−1ukul−1 + uiuj−1uk−1ul − uiuj−1uk−1ul−1 − ui−1ujukul + ui−1ujukul−1

+ ui−1ujuk−1ul − ui−1ujuk−1ul−1 + ui−1uj−1ukul − ui−1uj−1ukul−1 − ui−1uj−1uk−1ul + ui−1uj−1uk−1ul−1.

Now, using the i.i.d. structure of the ut process it follows that

E[eiejekel] = 2V 2
u (Ku + 3) if i = j = k = l,

= −V 2
u (Ku + 3) if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

= V 2
u (Ku + 3) if i = j = k + 1 = l + 1,

= 4V 2
u if i = j > k + 1, k = l,

= 2V 2
u if i = j + 1, j = k = l + 1,

= −2V 2
u if i = j ≥ k + 1, k = l + 1 or i = j + 1, j ≥ k + 1, k = l,

= V 2
u if i = j + 1, j ≥ k + 1, k = l + 1,

= 0 otherwise.

(A.3)

Denote the remaining terms that appear in (A.1),

Aijkl ≡ E[r∗i r∗j ]E[ekel] + E[r∗i r∗l ]E[ejek] + E[r∗i r∗k]E[ejel] + E[eiek]E[r∗j r∗l ] + E[eiel]E[r∗j r∗k] + E[eiej ]E[r∗kr∗l ].

From above E[r∗i r∗j ] = δi,jE[(r∗i )2] = δi,ja0h and E[eiej ] = δi,jE[e2
i ]−δ|i−j|,1Vu = 2δi,jVu−δ|i−j|,1Vu. Hence,

Aijkl = 6E[(r∗i )2]E[e2
i ] = 12a0Vuh if i = j = k = l,

= 3E[(r∗i )2]E[eiei−1] = −3a0Vuh if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

= 2E[(r∗i )2]E[e2
k] = 4a0Vuh if i = j = k + 1 = l + 1,

= 2E[(r∗i )2]E[e2
k] = 4a0Vuh if i = j > k + 1, k = l,

= 0 if i = j + 1, j = k = l + 1,

= E[(r∗i )2]E[ekek−1] = −a0Vuh if i = j ≥ k + 1, k = l + 1 or i = j + 1, j ≥ k + 1, k = l,

= 0 if i = j + 1, j ≥ k + 1, k = l + 1,

= 0 otherwise.

(A.4)

Now combining (A.2), (A.3), and (A.4) results in (2.18).
The proof of (2.19) proceeds similarly to one for (2.18). The main difference stems from the fact that

t− 1+ m+ jh > t− 1+ kh, so that several terms that appear in (2.18) are now zero. In particular, by using
the MA(1) structure of e

(h)
t , it follows that
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Cov[r(h)
t−1+m+ihr

(h)
t−1+m+jh, r

(h)
t−1+khr

(h)
t−1+lh]

= Cov[r∗(h)
t−1+m+ihr

∗(h)
t−1+m+jh, r

∗(h)
t−1+khr

∗(h)
t−1+lh] + Cov[e(h)

t−1+m+ihe
(h)
t−1+m+jh, e

(h)
t−1+khe

(h)
t−1+lh]

= δi,jδk,lCov[(r∗(h)
t−1+m+ih)2, (r∗(h)

t−1+kh)2] + δm,1δi,jδk,lδi,1δk,1/hCov[e(h)
t+he

(h)
t+h, e

(h)
t e

(h)
t ]

= δi,jδk,lCov

[∫ t−1+m+ih

t−1+m+(i−1)h

σ2
udu,

∫ t−1+kh

t−1+(k−1)h

σ2
udu

]
+ δm,1δi,jδk,lδi,1δk,1/hCov[u2

t , u
2
t ]

= δi,jδk,l

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 exp(−λn(m + (i− k − 1)h)) + δm,1δi,jδk,lδi,1δk,1/h(Ku − 1)V 2
u ,

where the first part in the last equation is a consequence of Lemma A.1 given below. The last equation
achieves the proof of (2.19).
Lemma A.1. Let a, b, c, d be real numbers such that a ≤ b ≤ c ≤ d. Then, for any h > 0,

Cov

[∫ b

a

σ2
udu,

∫ d

c

σ2
udu

]
=

p∑
n=1

a2
n

λ2
n

[1− exp(−λn(b− a))][1− exp(−λn(d− c))] exp(−λn(c− b)). (A.5)

Proof of Lemma A.1. We have

Cov

[∫ b

a

σ2
udu,

∫ d

c

σ2
udu

]
=

∑

1≤n,m≤p

anamE

[∫ b

a

Pn(fu)du

∫ d

c

Pm(fu)du

]
≡

∑

1≤n,m≤p

anambn,m,

bn,m = E

[∫ b

a

Pn(fu)du

∫ d

c

E[Pm(fu) | fτ , τ ≤ b]du

]
=

∫ b

a

E[Pn(fu)Pm(fb)]du

∫ d

c

exp(−λm(u− b))du

=
∑

1≤n,m≤p

anam

∫ b

a

exp(−λn(b− u))δn,mdu
[1− exp(−λm(d− c))]

λm
exp(−λm(c− b))

=
∑

1≤n,m≤p

anamδn,m
[1− exp(−λn(b− a))]

λn

[1− exp(−λm(d− c))]
λm

exp(−λn(c− b)),

i.e., (A.5).
In order to prove (2.20) note that the independence of the noise with the volatility and the no leverage

assumption imply that

Cov[IVt, r
(h)
t−1+ihr

(h)
t−1+jh] = Cov[IVt, r

∗(h)
t−1+ihr

∗(h)
t−1+jh] = E[IVtr

∗(h)
t−1+ihr

∗(h)
t−1+jh]− E[IVt]E[r∗(h)

t−1+ihr
∗(h)
t−1+jh]

= E[IVtE[r∗(h)
t−1+ihr

∗(h)
t−1+jh | στ , τ ≤ t]]− a0δi,ja0h = δi,j

(
E

[
IVt

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
− a2

0h

)

= δi,jCov

[(∫ t−1+(i−1)h

t−1

σ2
udu +

∫ t−1+ih

t−1+(i−1)h

σ2
udu +

∫ t

t−1+ih

σ2
udu

)
,

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]

= δi,j

(
p∑

n=1

a2
n

λ2
n

[2− exp(−λn(i− 1)h)− exp(−λn(1− ih))][1− exp(−λnh)] + V ar

[∫ t−1+ih

t−1+(i−1)h

σ2
udu

])
,

(A.6)

where the last equality holds due to Lemma A.1. Equation (15) in ABM (2004) implies

V ar

[∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
= 2

p∑
n=1

a2
n

λ2
n

[exp(−λnh) + λnh− 1]. (A.7)

By combining (A.6) and (A.7), one gets (2.20). Similar arguments lead to

Cov[IVt+1:t+m, r
(h)
t−1+ihr

(h)
t−1+jh] = Cov[IVt+1:t+m, r

∗(h)
t−1+ihr

∗(h)
t−1+jh] = δi,jCov

[
IVt+1:t+m,

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]

= δi,j

(
p∑

i=1

a2
i

λ2
i

[1− exp(−λnh)][1− exp(−λnm)] exp(−λn(1− ih))

)
,
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(A.8)

where the last equality holds due to Lemma A.1. This achieves the proof of (2.21).¥
Proof of Proposition 4.2. The first line of (A.8) implies

Cov[IVt+1, RMt(h)] =
∑

1≤i,j≤1/h

qijCov[IVt+1, r
(h)
t−1+ihr

(h)
t−1+jh] =

∑

1≤i≤1/h

qiiCov

[
IVt+1,

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]

= Cov[IVt+1, IVt]

under (4.27), which achieves the proof of (4.28) and Proposition 4.2.¥
Proof of Proposition 4.3. We have

Cov[RM t+m(h), RMt(h)] =
∑

1≤i,j,k,l≤1/h

qijqklCov[r(h)
t+m+ihr

(h)
t+m+jh, r

(h)
t+khr

(h)
t+lh]. (A.9)

When m > 1, (A.9) combined with the first part of (2.19) leads to (4.33). When m = 1, (A.9) combined
with the second and third parts of (2.19) leads to (4.32). This achieves the proof of Proposition 4.3.¥
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Table 1: R2 for Integrated Variance Forecasts
γ 1/h Model M1 M2

Horizon 1 5 20 1 5 20
R2(Best) 0.977 0.891 0.645 0.830 0.586 0.338
R2(IVt) 0.955 0.871 0.630 0.689 0.445 0.214
R2(IVt, 4) 0.957 0.874 0.632 0.698 0.446 0.227

0% 1440 R2(RV ∗
t (h)) 0.950 0.867 0.627 0.679 0.439 0.211

R2(RV ∗
t (h), 4) 0.951 0.868 0.627 0.685 0.450 0.224

288 R2(RV ∗
t (h)) 0.932 0.851 0.615 0.641 0.414 0.199

R2(RV ∗
t (h), 4) 0.934 0.852 0.616 0.642 0.429 0.216

96 R2(RV ∗
t (h)) 0.891 0.813 0.588 0.563 0.364 0.175

R2(RV ∗
t (h), 4) 0.908 0.829 0.599 0.580 0.395 0.202

48 R2(RV ∗
t (h)) 0.836 0.762 0.551 0.476 0.307 0.148

R2(RV ∗
t (h), 4) 0.883 0.805 0.582 0.519 0.360 0.186

1 R2(RV ∗
t (h)) 0.122 0.111 0.081 0.031 0.020 0.010

R2(RV ∗
t (h), 4) 0.360 0.329 0.238 0.072 0.054 0.029

R2(RV ∗
t (h), 19) 0.493 0.450 0.325 0.092 0.074 0.043

0.1% 1440 R2(RVt(h)) 0.896 0.817 0.591 0.547 0.353 0.170
R2(RVt(h), 4) 0.911 0.831 0.601 0.569 0.388 0.199

288 R2(RVt(h)) 0.908 0.828 0.599 0.581 0.375 0.181
R2(RVt(h), 4) 0.917 0.837 0.605 0.594 0.402 0.205

96 R2(RVt(h)) 0.873 0.797 0.576 0.525 0.339 0.163
R2(RVt(h), 4) 0.899 0.821 0.593 0.553 0.379 0.195

48 R2(RVt(h)) 0.821 0.749 0.541 0.450 0.291 0.140
R2(RVt(h), 4) 0.877 0.800 0.578 0.501 0.349 0.182

1 R2(RVt(h)) 0.122 0.111 0.081 0.031 0.020 0.010
R2(RVt(h), 4) 0.360 0.328 0.237 0.071 0.053 0.029
R2(RVt(h), 19) 0.492 0.449 0.325 0.091 0.074 0.042

0.5% 1440 R2(RVt(h)) 0.446 0.407 0.294 0.123 0.080 0.038
R2(RVt(h), 4) 0.711 0.649 0.469 0.222 0.164 0.088

288 R2(RVt(h)) 0.719 0.656 0.474 0.300 0.194 0.093
R2(RVt(h), 4) 0.837 0.764 0.552 0.395 0.283 0.149

96 R2(RVt(h)) 0.772 0.704 0.509 0.365 0.236 0.113
R2(RVt(h), 4) 0.858 0.782 0.566 0.443 0.313 0.165

48 R2(RVt(h)) 0.750 0.684 0.495 0.349 0.225 0.108
R2(RVt(h), 4) 0.849 0.775 0.560 0.431 0.306 0.161

1 R2(RVt(h)) 0.121 0.110 0.080 0.031 0.020 0.010
R2(RVt(h), 4) 0.357 0.326 0.236 0.070 0.052 0.028
R2(RVt(h), 19) 0.491 0.448 0.324 0.090 0.073 0.042

Note. The Table provides the R2 of the MZ regression related to forecasts of IVt+1:t+n 1, 5 and 20 days
ahead, for models M1 and M2; h indicates the size of the intraday return interval; γ is the noise-to-signal ratio,
V ar[noise]/E[IVt]. The first row provides the optimal forecast from ABM (2004). The next two rows refer to cases
where the explanatory variable is current (row 2) and lagged IVt (row 3). The last three blocks correspond to cases
with current and lagged (4 and 19 lags) daily realized volatility as regressors.
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Table 2: R2 for ’Optimally’ Sampled Intraday Returns
γ 1/h1 1/h2 Horizon 1 5 20
Model M1
0.1% 70.8 487 R2(RVt(h1)) 0.854 0.779 0.563

R2(RVt(h1), 4) 0.891 0.813 0.588
R2(RVt(h2)) 0.911 0.832 0.601
R2(RVt(h2), 4) 0.919 0.839 0.607

0.5% 24.2 97.3 R2(RVt(h1)) 0.684 0.624 0.451
R2(RVt(h1), 4) 0.824 0.752 0.544
R2(RVt(h2)) 0.772 0.704 0.509
R2(RVt(h2), 4) 0.858 0.782 0.566

Model M2
0.1% 65.3 431 R2(RVt(h1)) 0.487 0.315 0.151

R2(RVt(h1), 4) 0.527 0.364 0.188
R2(RVt(h2)) 0.585 0.378 0.182
R2(RVt(h2), 4) 0.597 0.404 0.206

0.5% 22.3 86.2 R2(RVt(h1)) 0.285 0.184 0.089
R2(RVt(h1), 4) 0.383 0.275 0.146
R2(RVt(h2)) 0.365 0.236 0.113
R2(RVt(h2), 4) 0.443 0.314 0.165

Note. The Table provides the R2 of the MZ regression related to forecasts of IVt+1:t+n 1, 5 and 20 days
ahead, for models M1 and M2; h indicates the size of the intraday return interval; γ is the noise-to-signal ratio,
V ar[noise]/E[IVt]. The regressors are current and lagged (4) realized volatility computed from return intervals
of length h1 or h2. h1 defined in (3.15) corresponds to the sampling interval suggested by Zhang, Mykland and
Aı̈t-Sahalia (2005) and Bandi and Russell (2008). h2 defined in (3.19) corresponds to the frequency maximizing
R2(IVt+1, RVt(h)).

Table 3: R2 for Optimally Combined Intraday Squared Returns
Model M1 M2

γ 1/h Horizon 1 5 20 1 5 20
0.1% 1440 R2(RVt(h)) 0.896 0.817 0.591 0.547 0.353 0.170

R2(Optimal) 0.897 0.819 0.592 0.562 0.359 0.171
288 R2(RVt(h)) 0.908 0.828 0.599 0.581 0.376 0.180

R2(Optimal) 0.910 0.830 0.600 0.600 0.382 0.182
96 R2(RVt(h)) 0.873 0.797 0.576 0.525 0.339 0.163

R2(Optimal) 0.874 0.798 0.577 0.537 0.343 0.164
48 R2(RVt(h)) 0.821 0.749 0.541 0.450 0.290 0.140

R2(Optimal) 0.821 0.749 0.542 0.457 0.293 0.140
0.5% 1440 R2(RVt(h)) 0.446 0.407 0.294 0.123 0.080 0.038

R2(Optimal) 0.446 0.407 0.294 0.124 0.080 0.038
288 R2(RVt(h)) 0.719 0.656 0.474 0.300 0.194 0.093

R2(Optimal) 0.719 0.656 0.475 0.303 0.195 0.093
96 R2(RVt(h)) 0.772 0.704 0.509 0.365 0.235 0.113

R2(Optimal) 0.772 0.705 0.510 0.369 0.237 0.114
48 R2(RVt(h)) 0.750 0.684 0.495 0.349 0.225 0.108

R2(Optimal) 0.750 0.684 0.495 0.353 0.227 0.109
Note. The Table provides the R2 of the MZ regression related to forecasts of IVt+1:t+n 1, 5 and 20 days ahead,
for models M1 and M2; h indicates the length of the intraday return interval; γ is the noise-to-signal ratio,
V ar[noise]/E[IVt]. R2(RVt(h)) is for the case where the regressor is RVt(h). R2(Optimal) corresponds to the

optimal linear forecast combining r
(h)2
t−1+ih, i = 1, ..., 1/h.
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Table 4: Mean, Variance and MSE of RV Measures
Model M1 M2

Mean Variance MSE Mean Variance MSE
IVt 0.636 0.168 0.168 0.504 0.0263 0.0263
γ = 0.1%
RV all

t 2.47 0.179 3.53 1.96 0.033 2.14
RV sparse

t 1.002 0.177 0.311 0.795 0.031 0.116
RV average

t 1.000 0.171 0.303 0.793 0.028 0.111
RV TS

t 0.634 0.172 0.172 0.503 0.027 0.027
RV Zhou

t 0.637 0.178 0.178 0.505 0.032 0.032
RV Kernel

t 0.637 0.173 0.173 0.506 0.029 0.029
γ = 0.5%
RV all

t 9.79 0.360 84.2 7.77 0.147 52.9
RV sparse

t 2.47 0.223 3.58 1.96 0.060 2.17
RV average

t 2.46 0.180 3.51 1.95 0.034 2.13
RV TS

t 0.634 0.182 0.182 0.503 0.035 0.035
RV Zhou

t 0.642 0.303 0.303 0.509 0.111 0.111
RV Kernel

t 0.642 0.194 0.194 0.509 0.042 0.042
Note. The Table provides summary statistics for the integrated variance and several realized measures, for models
M1 and M2. γ is the noise-to-signal ratio, V ar[noise]/E[IVt]. RV all

t = RVt(1/1444); RV sparse
t = RVt(1/288);

RV average
t averages the five RV sparse

t (1/288, k), 1 ≤ k ≤ 5, measures; RV TS is the adjusted two-scale measure
combining the RV all

t and RV average
t defined above; RV Zhou

t = RV Zhou
t (1/1444) from (4.21); RV Kernel

t =
RV Kernel

t (Tukey −Hanning, 4) given by (4.25).

Table 5: Correlations of RV Measures

IVt RV all
t RV sparse

t RV average
t RV TS

t RV Zhou
t RV Kernel

t

Model M2
γ = 0.1%
IVt 1.00 0.891 0.918 0.965 0.954 0.900 0.953
RV all

t - 1.00 0.861 0.905 0.851 0.769 0.843
RV sparse

t - - 1.00 0.951 0.945 0.872 0.934
RV average

t - - - 1.00 0.994 0.916 0.981
RV TS

t - - - - 1.00 0.926 0.987
RV Zhou

t - - - - - 1.00 0.940
RV Kernel

t - - - - - - 1.00
γ = 0.5%
IVt 1.00 0.423 0.660 0.878 0.863 0.487 0.792
RV all

t - 1.00 0.460 0.613 0.243 -0.078 0.153
RV sparse

t - - 1.00 0.751 0.688 0.359 0.590
RV average

t - - - 1.00 0.915 0.477 0.787
RV TS

t - - - - 1.00 0.626 0.889
RV Zhou

t - - - - - 1.00 0.653
RV Kernel

t - - - - - - 1.00
Note. The Table provides cross-correlation of the integrated variance and selected realized measures for model M2. γ
is the noise-to-signal ratio, V ar[noise]/E[IVt]. RV all

t = RVt(1/1444); RV sparse
t = RVt(1/288); RV average

t averages
the five RV sparse

t (1/288, k), 1 ≤ k ≤ 5, measures; RV TS is the adjusted two-scale measure combining the RV all
t and

RV average
t defined above; RV Zhou

t = RV Zhou
t (1/1444) from (4.21); RV Kernel

t = RV Kernel
t (Tukey −Hanning, 4)

given by (4.25).
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Table 6: R2 for Integrated Variance Forecasts

γ Model M1 M2
Horizon 1 5 20 1 5 20

0.1% R2(RV all
t ) 0.896 0.817 0.591 0.547 0.353 0.170

R2(RV sparse
t ) 0.908 0.829 0.599 0.581 0.375 0.181

R2(RV average
t ) 0.934 0.852 0.616 0.642 0.415 0.199

R2(RV TS
t ) 0.927 0.846 0.612 0.628 0.405 0.195

R2(RV Zhou
t ) 0.900 0.821 0.593 0.559 0.361 0.174

R2(RV kernel
t ) 0.928 0.846 0.612 0.626 0.404 0.194

0.5% R2(RV all
t ) 0.446 0.407 0.294 0.123 0.080 0.038

R2(RV sparse
t ) 0.719 0.656 0.474 0.300 0.194 0.093

R2(RV average
t ) 0.886 0.809 0.585 0.532 0.343 0.165

R2(RV TS
t ) 0.876 0.799 0.578 0.513 0.331 0.159

R2(RV Zhou
t ) 0.529 0.483 0.349 0.163 0.106 0.051

R2(RV kernel
t ) 0.829 0.756 0.547 0.432 0.279 0.134

Note. The Table provides the R2 of the MZ regression related to forecasts of IVt+1:t+n 1, 5 and 20 days
ahead, for models M1 and M2; γ is the noise-to-signal ratio, V ar[noise]/E[IVt]. The explanatory variable is
one realized measure. RV all

t = RVt(1/1444); RV sparse
t = RVt(1/288); RV average

t averages the five measures
RV sparse

t (1/288, k), 1 ≤ k ≤ 5; RV TS is the adjusted two-scale measure combining RV all
t and RV average

t defined
above; RV Zhou

t = RV Zhou
t (1/1444) defined in (4.21); RV Kernel

t = RV Kernel
t (Tukey −Hanning, 4) given by (4.25).

Table 7: R2 for One-Step Ahead Forecast of Integrated Variance
When the bandwidth Varies

Model M1 M2
γ Bandwidth Average TS Kernel Average TS Kernel
0.1% 1 0.929 0.899 0.900 0.442 0.143 0.559

2 0.935 0.924 0.912 0.527 0.295 0.583
3 0.935 0.928 0.925 0.587 0.531 0.615
4 0.934 0.927 0.928 0.642 0.628 0.626
6 0.930 0.924 0.928 0.635 0.623 0.629
9 0.923 0.917 0.925 0.621 0.610 0.623
11 0.918 0.912 0.922 0.611 0.601 0.618
14 0.910 0.904 0.917 0.597 0.586 0.609

0.5% 1 0.728 0.530 0.529 0.138 0.012 0.163
2 0.823 0.771 0.628 0.295 0.069 0.211
3 0.867 0.846 0.769 0.428 0.321 0.338
4 0.886 0.876 0.829 0.532 0.513 0.432
6 0.903 0.897 0.878 0.569 0.559 0.517
9 0.908 0.903 0.900 0.583 0.575 0.565
11 0.906 0.901 0.904 0.583 0.575 0.576
14 0.902 0.897 0.905 0.577 0.568 0.580

Note. The Table provides the R2 of the MZ regression related to forecasts of IVt+1:t+n 1, 5 and 20 days ahead, for
models M1 and M2; γ is the noise-to-signal ratio, V ar[noise]/E[IVt]. The explanatory variable is either RV average

t ,
RV TS

t or RV kernel
t . For a given bandwidth L, RV average

t averages the (L+1) measures RV sparse
t ((L+1)/1444, k),

1 ≤ k ≤ L + 1; RV TS is the adjusted two-scale measure that combines RV all
t = RVt(1/1444) and RV average

t with
the same bandwidth; RV Kernel

t = RV Kernel
t (Tukey −Hanning, L) defined in (4.25).
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Table 8: R2 for One-Step-Ahead RV Forecasts
Indp.Var. RV all

t RV sparse
t RV average

t RV TS
t RV Zhou

t RV Kernel
t

Model M1
γ = 0.1%
RV all 0.841 0.852 0.877 0.870 0.844 0.870
RV sp. 0.852 0.864 0.889 0.882 0.856 0.882
RV av. 0.877 0.889 0.914 0.908 0.880 0.901
RV TS 0.870 0.882 0.908 0.901 0.874 0.901
RV Zhou 0.844 0.856 0.880 0.874 0.848 0.874
RV Ker. 0.870 0.882 0.908 0.902 0.874 0.901
γ = 0.5%
RV all 0.208 0.336 0.414 0.409 0.247 0.387
RV sp. 0.336 0.542 0.668 0.659 0.399 0.624
RV av. 0.414 0.668 0.823 0.813 0.492 0.769
RV TS 0.409 0.659 0.813 0.803 0.486 0.760
RV Zhou 0.247 0.399 0.492 0.486 0.294 0.460
RV Ker. 0.387 0.624 0.769 0.760 0.460 0.720
Model M2
γ = 0.1%
RV all 0.434 0.461 0.510 0.498 0.444 0.497
RV sp. 0.461 0.490 0.541 0.529 0.471 0.528
RV av. 0.510 0.541 0.598 0.585 0.520 0.588
RV TS 0.498 0.529 0.585 0.572 0.509 0.570
RV Zhou 0.444 0.471 0.520 0.509 0.453 0.507
RV Ker. 0.497 0.528 0.583 0.570 0.507 0.568
γ = 0.5%
RV all 0.022 0.054 0.095 0.092 0.029 0.077
RV sp. 0.054 0.131 0.231 0.223 0.071 0.188
RV av. 0.095 0.231 0.410 0.396 0.126 0.333
RV TS 0.092 0.223 0.396 0.382 0.122 0.321
RV Zhou 0.029 0.071 0.126 0.122 0.039 0.102
RV Ker. 0.077 0.188 0.333 0.321 0.102 0.271

Note. The Table provides the R2 of the MZ regression related to forecasts for a realized measure (dependent variable)
one-day ahead, for models M1 and M2; γ is the noise-to-signal ratio, V ar[noise]/E[IVt]. The explanatory variable
is a realized measure. RV all

t = RVt(1/1444); RV sparse
t = RVt(1/288); RV average

t averages the five measures
RV sparse

t (1/288, k), 1 ≤ k ≤ 5; RV TS is the adjusted two- scale measure that combines RV all
t and RV average

t
defined above; RV Zhou

t = RV Zhou
t (1/1444) is defined in (4.21); RV Kernel

t = RV Kernel
t (Tukey −Hanning, 4) is

given by (4.25).
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