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1 Introduction

Since the introduction of the ARCH (Autoregressive Conditional Heteroskedasticity), the

GARCH (Generalized ARCH) and EGARCH (Exponential GARCH) models by Engle (1982),

Bollerslev (1986) and Nelson (1991) respectively, there has been widespread interest in semi-

parametric dynamic models that jointly parameterize the conditional mean and conditional

variance of �nancial series.1 The trade-o� between predictable returns (conditional2 mean)

and risk (conditional variance) of asset returns in �nancial time series appears as an essential

motivation for the study of these models. However, in most �nancial series, there are strong

evidence that the conditional probability distribution of returns has asymmetries and heavy

tails compared to the gaussian distribution.

This becomes all the more an issue when one realizes that GARCH regression models

are usually estimated and test statistics computed based on the Quasi-Maximum Likelihood

Estimator (QMLE) under the nominal assumption of a conditional normal log-likelihood. It is

well known that this QMLE 3 is consistent in the general framework of a dynamic model under

correct speci�cation of both the conditional mean and the conditional variance.4 Bollerslev and

Wooldridge (1992) focus on the QMLE due to its simplicity, but they make the three following

points: �rst, rather than employing QMLE, it is straightforward to construct GMM estimators;

second, the results of Chamberlain (1982), Hansen (1982), White (1982b) and Cragg (1983)

can be extended to produce an instrumental variables estimator asymptotically more e�cient

than the QMLE under non-normality; third, under enough regularity conditions, it is almost

certainly possible to obtain an estimator with a variance that achieves the semiparametric

lower bound (Chamberlain (1987)).

The main reason why QMLE is credited of simplicity is the regression-type interpretation of

associated inference procedures allowed by the nominal normality assumption. More precisely,

it is usual to interpret QML estimation and procedures of tests through the estimators and

associated diagnostic tools of two regression equations: one for the conditional mean and the

other one for the conditional variance. We propose here to systematize this argument and

to develop a general inference theory through these two regression equations that takes into

account skewness (the third moment) and kurtosis (the fourth moment). The intuition is as

follows: on the one hand, since we consider a regression of the variance, we need, in order to

increase the e�ciency, the variance of the variance, namely the kurtosis; on the other hand,

we have to perform the two regressions jointly. Hence, we need for the e�ciency reasons to

consider the covariance between the two regressions, that is the covariance between the mean

and the variance, namely the skewness.

1See Bollerslev-Chou-Kroner (1992) and Bollerslev-Engle-Nelson (1994) for a review.
2The precise conditioning information is de�ned in the sequel.
3See White (1982-a, 1994), Gouri�eroux-Monfort-Trognon (1984), Gouri�eroux-Monfort (1993) for the consis-

tency of the QMLE under the nominal assumption of an exponential distribution and see Broze-Gouri�eroux
(1995) and Newey-Steigerwald (1997) for a general QMLE theory. See also the recent book by Heyde (1997)
and the surveys by Newey-McFadden (1994) and Wooldridge (1994).

4See Weiss (1986) for consistency of the QMLE for ARCH models, Bollerslev-Wooldridge (1992) for GARCH
ones, Lee-Hansen (1994) and Lumsdaine for the IGARCH of Nelson (1990).
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In this paper, we focus on the e�cient estimation5 in the case of regression equations de�ned

by conditional expectations (for the �rst and the second moments, at least) without giving

up the simplicity of the QMLE.6 The paper has three main results.

First, we consider a general quadratic class of M-estimators (Huber (1967)) and characterize

the optimal quadratic estimator which involves the conditional skewness and the conditional

kurtosis. We show that the standard QMLE is asymptotically equivalent to a speci�c quadratic

estimator which is in general suboptimal. However, the optimal quadratic estimator can be

interpreted as a bivariate QMLE, with respect to the vector (y; y2) instead of y alone.

Secondly, we state a general equivalence result between (quadratic) M-estimation and GMM

(Hansen (1982)) which holds for any set of conditional moment restrictions given an information

set It�1 E[f(yt; �) j It�1] = 0; � 2 � � IRp

as soon as
@f

@�0
(yt; �) 2 It�1; 8� 2 �;

that is a regression type model.

In the framework of GARCH models, this result implies that the optimal quadratic M-estimator

is asymptotically equivalent to the e�cient GMM (with optimal instruments), even though the

class of quadratic M-estimators is generally strictly included in the GMM class. In other words,

the semiparametric e�ciency bound (see Chamberlain (1987)) may be reached by a quadratic

estimator which features the same simplicity advantage as the QMLE. As far as inference is

concerned in models de�ned by conditional moment restrictions, one can rely on robust QMLE

inference as developed in Wooldridge (1990, 1991a-b). Of course, the QMLE paradigm applies

in this case in a multivariate version, involving (y; y2) since conditional heteroskedasticity is

to be accounted for.7

The GMM point of view stresses the informational paradox. E�cient semiparametric estima-

tors generally use, for feasibility, some additional information which should have been incor-

porated in the set of conditional moment restrictions involved in e�cient GMM. This pitfall

is not new (see for instance Bates and White (1990)). However, with respect to the initial

set of moment restrictions, the e�cient semiparametric estimator reaches the semiparametric

e�ciency bound (see e.g. Chamberlain (1987)).

Thirdly, our estimating procedure o�ers the advantage of taking into account non-gaussian

skewness and kurtosis. In general the conditional skewness and the conditional kurtosis are

not speci�ed, except in the so-called semiparametric GARCH models introduced by Engle and

Gonz�alez-Rivera (1991).8 In this framework, the standardized residuals are i.i.d which implies

5Testing tools are developed in Alami-Meddahi-Renault (1998).
6The previous version of this paper, Meddahi and Renault (1995) stresses that, even if the regression

equations are de�ned by linear projections (in the spirit of Drost and Nijman (1993) weak GARCH) instead of
conditional expectations, regression-based quadratic M-estimators may also be still consistent. See also Franck
and Zakoian (1997).

7For higher moments equations, conditional skewness or conditional kurtosis for example, QMLE will be
de�ned in terms of (y; y2; y3) and (y; y2; y3; y4).

8For the asymptotic properties of the semiparametric GARCH models, see Linton (1993) and Drost-Klassen
(1997).
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that the conditional skewness and kurtosis are constant. Hence, they coincide with the un-

conditional skewness and kurtosis, which can be estimated. Thus, our estimation procedure

is less demanding than the nonparametric one of Engle and Gonz�alez-Rivera (1991). Indeed,

this procedure can be applied in a more general setting than the semiparametric one, in par-

ticular when we are able to consider a su�ciently narrow information set It�1 to ensure that

conditional skewness and kurtosis are constant. The narrowest information set that one is

allowed to consider is the �-�eld I�t�1 spanned by the family of measurable functions mt(�) and

ht(�), indexed by � 2 � which represent respectively the conditional mean and the conditional

variance functions of interest. We stress this point not only to show that there are many cases

where we are able to reach the e�ciency bound by using only parametric techniques but also

to notice that nonparametric tools can often be used as soon as the �-�eld I�t�1 is spanned by

a �nite set of random variables.

The paper is organized as follows. We �rst build our class of quadratic M-estimators in

section 2. In this class, we show that a particular estimator is asymptotically equivalent to the

QMLE. Then, we exhibit an estimator with minimum asymptotic covariance matrix in this class

by a Gauss-Markov type argument. This optimal instrument takes into account the conditional

skewness and the conditional kurtosis. Section 3 reconsiders the same issue through the GMM

approach. The links between GMM, QMLE and M-estimation are clearly established. Finally,

in section 4 we address several issues related to the feasibility and the empirical relevance of

our general approach. In particular, we consider in detail the semiparametric GARCH models

through a Monte Carlo study and we describe several circumstances where our methodology

remains friendly even though the assumptions of semiparametric GARCH are dramatically

weakened. We conclude in section 5.

2 E�ciency bound for M-estimators
In this section, we �rst introduce the set of dynamic models of interest. Since these models are

speci�ed by their conditional mean and their conditional variance, that is by two regression

equations, it is natural to consider least-squares based estimation procedures. Therefore we

introduce a large quadratic class of \generalized" M-estimators. We further characterize an

e�ciency bound for this class of estimators following the Bates and White (1993) concept of

determination of estimators with minimum asymptotic covariance matrices.

2.1 Notation and setup9

Let (yt; zt); t = 1; 2; ::; T be a sequence of observable random variables with yt a scalar and

zt of dimension K. The variable yt is the endogenous variable of interest which has to be

explained in terms of K explanatory variables zt and past values of yt and zt
10. Thus, let

It�1 = (z0t; yt�1; z
0
t�1; :::; z

0
1; y1)

0 denote the information provided by the predetermined variables,

which will be called the information available at time (t-1) in the rest of the paper. We consider

here the joint inference about E(yt j It�1) and V ar(yt j It�1). These conditional mean and

9This �rst subsection is to a large extent borrowed from Wooldridge (1991).
10Many concepts and results of the paper could be extended easily to a multivariate vector yt of endogenous

variables. These extensions are omitted here for the sake of notational simplicity.
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variance functions are jointly parameterized by a vector � of size p:

Assumption 1: For some �o 2 � � IRp, E(yt j It�1) = mt(�
0) and V ar(yt j It�1) = ht(�

0).

Assumption 1 provides a regression model of order 2 for which usual identi�ability conditions

are assumed.

Assumption 2: For every � 2 �, mt(�) 2 It�1; ht(�) 2 It�1 and mt(�) = mt(�
0)

ht(�) = ht(�
0)

g ) � = �0

Typically, we have in mind GARCH-regression models where � = (�0; � 0)0 and mt(�) depends

only on � (mt(�) = mt(�) with a slight change in notations) and ht(�) depends on � only

through past mean values m� (�); � < t.

In this setting, Assumption 2 is generally replaced by a slightly stronger one:

Assumption 2'a: � = A� B, �0 = (�0
0

; �0
0

)0.

For every � 2 A, mt(�) = mt(�
0)) � = �0.

For every � 2 B, ht(�
0; �) = ht(�

0; �0)) � = �0.

A local version of Assumption 2'a which is usual for least-squares based estimators of � and �

is:

Assumption 2'b: E
@mt

@�
(�0)

@mt

@�0
(�0) and E

@ht
@�

(�0)
@ht
@� 0

(�0) are positive de�nite.

However, the only maintained assumptions hereafter will be Assumptions 1 and 2 since the

additional restrictions which characterize Assumption 2' with respect to Assumption 2 may

be binding for at least two reasons. First, they exclude ARCH-M type models (Engle-Lilien-

Robins (1987)), where the whole conditional variance ht(�) should appear in the conditional

mean functionmt(�). Second,they exclude some unidenti�able representations of GARCH type

models. Let us consider for instance a GARCH-regression model which, for a given value �0

and "t = yt �mt(�
0), is characterized by a GARCH(p,q) representation of "2t :

ht(�
0) = �00 +

qX
i=1

�0i "
2
t�i(�

0) +
pX

j=1

�0q+jht�j(�
0) (2.1)

or equivalently, by the following ARMA (Max(p,q),p) model for "2t :

"2t (�
0)�

qX
i=1

�0i "
2
t�i(�

0)�
pX

j=1

�0q+j"
2
t�j(�

0) = �00 + �t �
pX

j=1

�0q+j�t�j (2.2)

where �t = "2t � ht(�). Therefore, the vector of parameters �0 = (�0i )0�i�p+q is identi�able (in

the sense of Assumption 2'a) if and only if the ARMA representation (2.2) is minimal in the

sense that there is no common factor involved in both the AR and the MA lag polynomials11.

This excludes for instance the case: �0i = 0 8 i = 1; ::p with nonzero �0q+j for some j = 1; ::; q.

In other words, GARCH(p,0) models, p = 1; 2; ::: are excluded by Assumption 2'.

11Of course, the positivity requirement for the conditional variance ht(�
0) de�ned by (2.1) implies some

inequality restrictions on �0 (see Nelson and Cao (1992)) but they do not modify the identi�cation issue as
presented here.
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A benchmark estimator for �0 is the Quasi-Maximum Likelihood Estimator (QMLE) under

the nominal assumption that yt given It�1 is normally distributed. For observation t, the

quasi-conditional log-likelihood apart from a constant is:

lt(yt j It�1; �) = �1

2
loght(�)� 1

2ht(�)
(yt �mt(�))

2 (2.3)

The QMLE �̂QT is obtained by maximizing the normal quasi-log-likelihood function LT (�) =PT
t=1 lt(�). The consistency and asymptotic probability distribution of �̂QT have been extensively

studied by Bollerslev and Wooldridge (1992). In the framework of their assumptions, we know

that the asymptotic covariance matrix of
p
T (�̂QT � �0) is A0�1

B0 A0�1

, which is consistently

estimated by A0�1

T B0
T A

0�1

T where:

A0
T = � 1

T

TX
t=1

E[
@st
@�0

(�0)]; B0
T =

1

T

TX
t=1

E[st(�
0)st(�

0)0]; where st(�) =
@lt
@�

(yt j It�1; �):

More precisely, di�erentiation of (2.3) yields the p x 1 score function:

st(�) = � 1

2ht(�)

@ht
@�

(�) +
1

2h2t (�)
(yt �mt(�))

2@ht
@�

(�) +
1

ht(�)
(yt �mt(�))

@mt

@�
(�)

=
1

ht(�)

@mt

@�
(�)"t(�) +

1

2h2t (�)

@ht
@�

(�)�t(�)

(2.4)

where:

"t(�) = yt �mt(�); (2.5.a)

�t(�) = "t(�)
2 � ht(�): (2.5.b)

Note that by Assumption 1, "t(�
0) and �t(�

0) are martingale di�erence sequences with respect

to the �ltration It�1. This allows Bollerslev and Wooldridge (1992) to apply a martingale

central limit theorem for the proof of asymptotic normality of the QMLE.

Since we are concerned by \quadratic statistical inference", the form of the score function

(2.4) in relation with error terms "t(�) and �t(�) of \regression models" (2.5.a) and (2.5.b)

suggests a quadratic interpretation of the QMLE. More precisely, we consider a modi�ed score

function:

~st(�) =
1

ht(�0)

@mt

@�
(�)"t(�) +

1

2h2t (�0)

@ht
@�

(�)("t(�
0)2 � ht(�)); (2.6)

which is the negative of the gradient vector with respect to � of the quadratic form:

"2t (�)

2ht(�0)
+
("2t (�

0)� ht(�))
2

4h2t (�0)
: (2.7)

The idea to base our search for linear procedures of inference on this quadratic form appears

natural since (see Appendix A1):

~st(�
0) = st(�

0) and E[
@~st
@�0

(�0)] = E[
@st
@�0

(�0)] (2.8)
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so that the replacement of s by ~s does not modify the matrices AT and BT that characterize

the asymptotic probability distribution of the \estimator" obtained by solving the �rst-order

conditions:
PT

t=1 st(�) = 0: Therefore, we may hope to build, through this modi�ed score

function, a regression-based estimator asymptotically equivalent to the QMLE. We are going

to introduce such an estimator in the following subsection as a particular element of a large

class of quadratic generalized M-estimators.

2.2 A quadratic class of generalized M-estimators

As usual, a regression-based estimation of GARCH-type regression models raises two main

di�culties. First, we have to take into account simultaneously the two dynamic regressions:

yt = mt(�) + "t(�); E["t(�
0) j It�1] = 0; (2.9.a)

"2t (�) = ht(�) + �t(�); E[�t(�
0) j It�1] = 0: (2.9.b)

Second, the dependent variable of regression equation (2.9.b) depends on the unknown pa-

rameter � so that we must have at our disposal a �rst stage consistent estimator ~�T of �0.

However, such an estimator is generally easy to obtain. For instance, in the framework of

Assumption 2'a, ~�T = (~�0T ;
~� 0T )

0 where we can choose in a �rst stage ~�T as a (non linear) least

squares estimator of �0 in the regression equation (2.9.a):

~�T = Arg Min
�

TX
t=1

(yt �mt(�))
2 (2.10.a)

and, in a second stage, ~�T as a (non linear) least squares estimator of �0 in the regression

equation (2.9.b) after replacement of �0 by ~�T :

~�T = Arg Min
�

TX
t=1

("t(~�T )
2 � ht(~�T ; �))

2 (2.10.b)

After obtaining such a preliminary consistent estimation ~�T of �0, it is then natural to try

to improve it by considering more general weighting schemes of the two regression equations,

that is to say general M-estimators of the type:

�̂T (~�T ; 
T ) = Arg Min
�

TX
t=1

qt(�; ~�T ; 
T ) (2.11.a)

where �t;T is a symmetric positive matrix, 
T = (�t;T )T�t�1 and:

qt(�; ~�T ; 
T ) =
1

2
("t(�); "

2
t (
~�T )� ht(�))�t;T ("t(�); "

2
t (
~�T )� ht(�))

0; (2.11.b)

Indeed, since we have only parametric methodologies in mind12, we shall always consider

weighting matrices �t;T of the following form: �t;T = �t(!T ), where !t is It-measurable and

�t(!) is a symmetric positive matrix for every ! in a parametric space V � IRn. To derive

weak consistency of the resulting estimator �̂T (~�T ; !T ; 
), 
 = (�t)t�1 (with a slight change of

notation) we shall maintain the following assumption (see Wooldridge (1994) for notations and

terminology):

12However, many results of this paper could be extended to the case of nonparametric consistent estimator
�t;T of weighting matrices �t. See Linton (1994) for a review of this type of approach.
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Assumption 3: Let V � IRn, let �t be a sequence of random matricial functions de�ned on

V. For every ! 2 V, �t(!) is a symmetric 2 x 2 matrix. We assume that:

(A.3.1) � and V are compact.

(A.3.2) ~�T
P�! �0 2 � and !T

P�! !� 2 V.
(A.3.3) mt, ht and �t satisfy the standard measurability and continuity requirements. In

particular mt(�), ht(�) and �t(!) are It�1 measurable for every (�; !) 2 � x V.
(A.3.4) q
t (�; ~�T ; !) =

1
2
("t(�); "

2
t (
~�T )� ht(�))�t(!)("t(�); "

2
t (
~�T )� ht(�))

0

satis�es the Uniform Weak Law of Large Numbers (UWLLN) on � x � x V.
(A.3.5) �t(!

�) is positive de�nite.

We are then able (see Appendix B) to derive the consistency result based on the usual

analogy principle argument.

Proposition 2.1 Under Assumptions 1, 2, 3, the estimator �̂T (~�T ; !T ; 
) de�ned by:

�̂T (~�T ; !T ; 
) = Arg Min
�2�

TX
t=1

("t(�); "
2
t (
~�T )� ht(�))�t(!T )("t(�); "

2
t (
~�T )� ht(�))

0

(2.12)

where 
 = (�t)t�1, is weakly consistent towards �0.

Note that the quadratic M-estimator that we have suggested in the previous subsection (see

the objective function (2.7)) by analogy with the QMLE belongs to the general class considered

here when !� = �0 and

�t(�) =

2
6664

1

ht(�)
0

0
1

2h2t (�)

3
7775 (2.13)

By extending to a dynamic setting the quadratic principle of estimation �rst introduced by

Crowder (1987) for transversal data, we may be led to consider more general weighting matrices.

Indeed, we may guess that the weighting matrix (2.13) is optimal in the gaussian case where,

by the well-known kurtosis characterization of the gaussian probability distribution:

ht(�
0) = V ar["t(�

0) j It�1] =) 2h2t (�
0) = V ar["2t (�

0) j It�1] = V ar[�t(�
0) j It�1]:

On the other hand, a leptokurtic conditional probability distribution function (which is a

widespread �nding for �nancial time series) may lead to a di�erent weight of 2h2t (�
0) for �2t (�

0)

while skewness may lead to a non-diagonal weighting matrix �t. Of course, the relevant

criterion for the choice of a sequence 
 = (�t)t�1 of weighting matrices is the asymptotic

covariance matrix of the corresponding estimator �̂T (~�T ; !T ; 
):

As far as the asymptotic probability distribution is concerned, the following assumptions are

usual (see for instance Bollerslev and Wooldridge (1992)).

Assumption 4: In the framework of Assumption 3, we assume that:

(A.4.1.) �0 2 int�, !� 2 intV, interiors of the corresponding parameter spaces � and
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V, and pT (~�T � �0) = Op(1)
p
T (!T � !�) = Op(1).

(A.4.2.) mt(:) and ht(:) are twice continuously di�erentiable on int � for all It�1:

(A.4.3.) Denote by: s
t (�; �; !) =
@q
t
@�

(�; �; !); which is assumed squared-integrable, and

[s
t (�; �; !)(s


t (�; �; !))

0

] satis�es the UWLLN on �� �� V with:

B0

 = lim

T!1

1

T

TX
t=1

E[s
t (�
0; �0; !�)s
t (�

0; �0; !�)
0

] is positive de�nite; s
t (�
0; �0; !�) satis�es the

central limit theorem:
1p
T

TX
t=1

s
t (�
0; �0; !�)

d! N [0; B0

]:

(A.4.4.)
@s
t
@�0

(�; �; !) and
@s
t
@�0

(�; �; !) satisfy the UWLLN on �� �� V with

A0

 = limT!1

1

T

TX
t=1

E

"
@s
t
@�0

(�0; �0; !�)

#
positive de�nite.

Note that:

q
t (�; �; !) =
1

2
["t(�); "

2
t (�)� ht(�)]�t(!)

2
4 "t(�)

"2t (�)� ht(�)

3
5,

s
t (�; �; !) = �
"
@mt

@�
(�);

@ht
@�

(�)

#
�t(!)

2
4 "t(�)

"2t (�)� ht(�)

3
5, and

@s
t
@�0

(�; �; !) =

"
@mt

@�
(�);

@ht
@�

(�)

#
�t(!)

2
664
@mt

@�0
(�)

@ht
@�0

(�)

3
775+ ct(�; �; !);

with E[ct(�
0; �0; !�) j It�1] = 0. Therefore,

E

"
@s
t
@�0

(�0; �0; !�)

#
= E

2
664
"
@mt

@�
(�0);

@ht
@�

(�0)

#
�t(!)

2
664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
775
3
775 and

E
h
s
t (�

0; �0; !�)s
t (�
0; �0; !�)

0
i
= E

8>><
>>:
"
@mt

@�
(�0);

@ht
@�

(�0)

#
�t(!)�t�t(!)

2
664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
775
9>>=
>>; ;

where �t = V ar

2
4
2
4 "t(�

0)

�t(�
0)

3
5 j It�1

3
5 :

Therefore, if Assumption 4 is maintained in particular for the canonical weighting matrix

�t = Id2; the positive de�niteness of A0 and B0 corresponds
13 to the following assumption:

13In general, the non-singularity of an expectation matrix E[x�x
0

] where x is a p�K random matrix and �
is a K �K random symmetric positive matrix depends on �. But, intuitively, the non singularity of E(xx

0

) is
not only necessary (for � = IdK) but often su�cient.
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Assumption 4': (i) �t = V ar

2
4 "t(�

0)

�t(�
0)

j It�1
3
5 is positive de�nite.

(ii) E

2
664
"
@mt

@�
(�0);

@ht
@�

(�0)

# 2664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
775
3
775 is positive de�nite.

The �rst item of Assumption 4' is indeed very natural since we are interested in the asymptotic

probability distribution of least squares based estimators of � from the two dynamic regression

equations (2.9.a) and (2.9.b). If the error terms "t(�
0) and �t(�

0) were conditionally (given

It�1) perfectly correlated, this should introduce a restriction on �, changing dramatically the

estimation issue. The second item is directly related to the statement of Assumption 2'b in

the case of a GARCH-regression model � = (�
0

; �
0

)
0

conformable to Assumption 2'a. In this

case,
@mt

@�
= 0 so that:

E

8>><
>>:
"
@mt

@�
(�0);

@ht
@�

(�0)

# 2664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
775
9>>=
>>; = E

8>>><
>>>:

2
6664
@mt

@�
(�0)

@mt

@�0
(�0) +

@ht
@�

(�0)
@ht
@�0

(�0)
@ht
@�

(�0)
@ht
@� 0

(�0)

@ht
@�

(�0)
@ht
@�0

(�0)
@ht
@�

(�0)
@ht
@� 0

(�0)

3
7775
9>>>=
>>>;

is automatically positive de�nite when Assumption 2'b is ful�lled (see Appendix A2).

It is worth noticing however that the framework of Assumptions 3 and 4 is fairly general and

does not exclude for instance ARCH-M type models (where the whole vector � of parameters

appears in the conditional expectation mt(�)) since a �rst step consistent estimator ~�T such asp
T (�̂T � �0) = Op(1) is always available, for instance a QMLE conformable to (2.3).

Moreover, Assumptions 3 and 4 are stated in a framework su�ciently general to allow for

non-stationary score processes, for which E
h
s
t (�

0; �0; !�)s
t (�
0; �0; !�)

0

i
and E

"
@s
t
@�0

(�0; �0; !�)

#

could depend on t. This case is important since it occurs as soon as non-markovian (for

instance MA) components are allowed either in the conditional mean (ARMA processes) or

in the conditional variance (GARCH processes). In any case, the following result holds:

Proposition 2.2 Under Assumptions 1, 2, 3 and 4, the estimator �̂T (~�T ; !T ; 
) de�ned by:

�̂T (~�T ; !T ; 
) = Arg Min
�2�

TX
t=1

("t(�); "
2
t (
~�T )� ht(�))�t(!T )("t(�); "

2
t (
~�T )� ht(�))

0

is asymptotically normal, with asymptotic covariance matrix A0�1


 B0

A

0�1


 where:

A0

 = limT!1

1

T

TX
t=1

E

8>>>><
>>>>:
"
@mt

@�
(�0);

@ht
@�

(�0)

#
�t(!

�)

2
66664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
77775

9>>>>=
>>>>;
;
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B0

 = limT!1

1

T

TX
t=1

E

8>>>><
>>>>:
"
@mt

@�
(�0);

@ht
@�

(�0)

#
�t(!

�)�t(�
0)�t(!

�)

2
66664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
77775

9>>>>=
>>>>;
;

�t(�
0) = V ar

2
4
0
@ "t(�

0)

�t(�
0)

1
A
������ It�1

3
5 and w� = PlimwT :

We are now able to be more precise about our regression based interpretation of the QMLE:
Proposition 2.3 If Assumptions 1, 2, 3, 4 are ful�lled for


Q = (�Q
t )t�1; �

Q
t (!

�) =

2
66664

1

ht(�0)
0

0
1

2h2t (�0)

3
77775

then �̂T (~�T ; !T ; 

Q) is asymptotically equivalent to the QMLE �̂QT :

But, as announced in the introduction, Proposition 2.2 suggests the possibility to build re-

gression based consistent estimators �̂T (~�T ; !T ; 
) which, for a convenient choice of 
 and

!� = Plim !T ; could be (asymptotically) strictly more accurate than QMLE. This will be the

main purpose of the next subsection 2.3. Let us only notice at this stage that, according to

Proposition 2.2, the asymptotic accuracy of �̂T (~�T ; !T ; 
) depends on (~�T ; !T ; 
 = (�t)t�1) only

through: �t(!
�); t � 1; whatever the consistent estimators ~�T and !T of �0 and !� may be.

2.3 Determination of estimators with minimum asymptotic covari-

ance matrices
Our purpose in this section is to address an e�ciency issue as in Bates and White (1993), that

is to �nd an optimal estimator in the class de�ned by Assumptions 3 and 4. Our main result

is then the following:

Theorem 2.1 If the GARCH regression model:8<
:
yt = mt(�) + "t(�); E("t(�

0) j It�1) = 0

"2t (�) = ht(�) + �t(�); E(�t(�
0) j It�1) = 0

ful�lls Assumptions 1 and 2 and: �t(�
0) = V ar

2
4 "t(�

0)

�t(�
0)

������ It�1
3
5 is positive de�nite, a su�cient

condition for an estimator of the class de�ned by Assumptions 3 and 4 being of minimum

asymptotic covariance matrix in that class is that, for all t and all It�1:

�t(!
�) = �t(�

0)�1:

The corresponding asymptotic covariance matrix is (A0)�1 with:

A0 = lim
T!1

1

T

TX
t=1

E

2
66664
"
@mt

@�
(�0);

@ht
@�

(�0)

#
��1t (�0)

2
66664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
77775

3
77775
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Of course, this theorem leaves unsolved the general issue of estimating �t(�
0) to get a feasible

estimator in practice.14 This issue will be addressed in more details in Section 3. At this stage

we only stress the statistical interpretation of the optimal weighting matrix:

�t(!
�) = �t(�

0)�1 =

2
64 ht(�

0) M3t(�
0)ht(�

0)
3

2

M3t(�
0)ht(�

0)
3

2 (3Kt(�
0)� 1)h2t (�

0)

3
75
�1

: (2.14)

with M3t(�
0) = E[u3t (�

0) j It�1]; (2.15.a)

Kt(�
0) =

1

3
E[u4t (�

0) j It�1]: (2.15.b)

When one derives the �rst-order conditions associated with this optimal M-estimator, one

obtains equations similar to some previously proposed in the literature for some particular

cases: the i.i.d setting of Crowder (1987) and the stationary markovian setting of Wefelmeyer

(1996). In other words, Theorem 2.1 suggests to improve the usual QMLE by taking into

account non-gaussian conditional skewness and kurtosis while, by Proposition 2.3, the QMLE

�̂QT should be ine�cient if: M3t(�
0) 6= 0 or Kt(�

0) 6= 1.

Let us �rst consider the simplest case of symmetric innovations (M3t(�
0) = 0). In this case, the

role of Kt(�
0) is to provide the optimal relative weights for the two regression equations (2.9.a)

and (2.9.b). In case of asymmetry (M3t(�
0) 6= 0), Theorem 2.1 stresses the importance of

taking into account the conditional correlation between these two equations through a suitably

weighted cross-product of the two errors. Indeed, Meddahi and Renault (1996) documents the

role of this correlation as a form of leverage e�ect, according to Black (1976).

In order to highlight the role of conditional skewness and kurtosis to build e�cient M-

estimators, we shall use the following reparametrization 
 = (at; bt; ct)t�1 of the sequence


 = (�t)t�1 such as

�t = 2

2
66664

at
ht(�0)

ct
ht(�0)3=2

ct
ht(�0)3=2

bt
h2t (�0)

3
77775 : (2.16)

In other words, the class of M-estimators de�ned by assumption 3 consists of the following:

Arg Min
�

TX
t=1

at
"t(�)

2

ht(�0)
+ bt

("t( ~�T )
2 � ht(�))

2

ht(�0)2
+ 2ct

"t(�)("t( ~�T )
2 � ht(�))

ht(�0)
3

2

; (2.17)

for various choices of the weights (at; bt; ct) 2 It�1 ensuring that �t is positive de�nite (at > 0,

bt > 0 and atbt > c2t ). Of course, the M-estimator (2.17) is unfeasible and its practical

14On the other hand, when a consistent estimator �̂t;T of �t(�
0) is available, Theorem 2.1 directly provides

a consistent estimator of the asymptotic covariance matrix of the optimal estimator �̂T by:

1

T

TX
t=1

�
@mt

@�
(�̂T );

@ht

@�
(�̂T )

�
�̂�1
t;T

2
664

@mt

@�
0
(�̂t;T )

@ht

@�
0
(�̂t;T )

3
775

.
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implementation should lead to replace �0 by the consistent preliminary estimator ~�t. But

Theorem 3.1 above implies that the optimal choice of at; bt; ct should be:

a�t = (3Kt(�
0)� 1) � b�t ; b�t =

1

2

1

3Kt(�0)� 1�M3t(�0)2
; c�t = �M3t � b�t : (2.18)

For feasibility we need a preliminary estimation of the optimal weights a�t ; b
�
t ; c

�
t as detailed

in section 3 below. Moreover, by Proposition 2.3, we have a M-estimator asymptotically

equivalent to the QMLE �̂QT by choosing the following constant weights:

(at; bt; ct) = (
1

2
;
1

4
; 0): (2.19)

One of the issues addressed in section 3 below is the estimation of weights (a�t ; b
�
t ; c

�
t ) which

allows one to improve the choice (2.19), that is to obtain a M-estimator which is more accurate

than the QMLE. Indeed, it is important to keep in mind that the usual QMLE is ine�cient

since it does not fully take into account the information included in the two regression equations

(2.9). On the other hand, if one considers these two equations as a SUR system:(
yt = mt(�) + "t; E["t j It�1] = 0;
"2t (�

0) = ht(�) + �t; E[�t j It�1] = 0;
(2.20)

it is clear that the QMLE written from the joint probability distribution of (yt; "
2
t (�

0)) (and

not only from yt as the usual QMLE) considered as a gaussian vector with conditional variance

�t(�
0) coincides with the optimal M-estimator characterized by Theorem 2.1, when "2t (�

0) has

been replaced by a �rst stage estimator "2t (
~�T ). Another way to interpret such an estimator

is to compute the QMLE with gaussian pseudo-likelihood from the following SUR system

(equivalent to (2.20)) (
yt = mt(�) + "t; E["t j It�1] = 0;
y2t = m2

t + ht(�) + �t; E[�t j It�1] = 0:
(2.21)

Of course, both the QMLE and the optimal M-estimator (as previously de�ned) are unfeasi-

ble. Their practical implementation would need (see section 3) a �rst stage estimation of the

conditional variance matrix �t(�
0). But we stress here that a quasi-generalized PML1 as in

Gourieroux-Monfort-Trognon (1984) is optimal since it takes into account the informational

content of the parametric model for the two �rst moments (with a parametric speci�cation of

the third and fourth ones) as soon as it is written in a multivariate way about (yt; y
2
t ).

3 Instrumental Variable Interpretations
3.1 An equivalence result

Let us consider the general conditional moment restrictions:

E[f(yt; �) j It�1] = 0; � 2 � � IRp (3.1)

which uniquely de�ne the true unknown value �0 of the vector � of unknown parameters. For

any sequence (�t)t�1 of positive de�nite matrices of size H (same size that f), one may de�ne

a M-estimator �̂T of �0 as:

�̂T = Arg Min
�2�

TX
t=1

f(yt; �)
0�tf(yt; �): (3.2)

12



Under general regularity conditions, this estimator will be characterized by the �rst order

conditions: TX
t=1

@f 0

@�
(yt; �̂T )�tf(yt; �̂T ) = 0: (3.3)

By a straightforward generalization of the proof of Proposition 2.1, the consistency of such an

estimator is ensured by the following assumptions:
f(yt; �)� f(yt; �

0) 2 It�1; 8� 2 � (3.4.a)

and �t 2 It�1:
But, in such a case: @f 0

@�
(yt; �

0) 2 It�1; 8� 2 � (3.4.b)

and the M-estimator �̂T can be reinterpreted as the GMM estimator associated with the

following unconditional moment restrictions (implied by (3.1)):

E[
@f 0

@�
(yt; �)�tf(yt; �)] = 0: (3.5)

We have proved that any M-estimator of our quadratic class (by extending the terminology of

previous sections) is a GMM estimator based on (3.1) and corresponding to a particular choice

of instruments.15

Conversely, we would like to know if the e�ciency bound of GMM (corresponding to optimal

instruments) may be reached by M-estimators.

Three types of results are available concerning e�cient GMM based on conditional moment

restrictions (3.1).

i) First, it has been known since Hansen (1982) that the optimal choice of instruments is given

by Dt(�
0)�t(�

0)�1 where:

Dt(�
0) = E[

@f 0

@�
(yt; �

0) j It�1] and �t(�
0) = V ar[f(yt; �

0) j It�1]:

In other words, the GMM e�ciency bound associated with (3.1) is characterized by the just

identi�ed unconditional moment restrictions:
E[Dt(�

0)��1t (�0)f(yt; �)] = 0: (3.6)

ii) In practise, we cannot use the moments conditions (3.6) since the parameter �0 as well as

the functions Dt(:) and �t(:) are unknown. �0 could be replaced by a �rst stage consistent

estimator ~�T without modifying the asymptotic probability distribution of the resulting GMM

estimator (see e.g. Wooldridge (1994)). In our case, that is a regression type model, the

function Dt(:) is known (assumption (3.4)): Dt(�) =
@f

@�0
(yt; �): Hence, the main issue is

the estimation of the conditional variance �t(�
0). Either we have a parametric form of the

conditional variance (section 4) and we can compute the optimal instrument, without however

taking into account the information included in the conditional variance matrix �t(�
0).16 Or

15Note that this result is di�erent from the well known one where we reinterpret a score function as a moment
condition.

16In other words, our \e�cient" GMM estimation with optimal instruments (with respect to the initial set
of restrictions) is only a second best one.
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this conditional variance could be nonparametrically estimated at fast enough rates to obtain

an asymptotically e�cient GMM estimator (see e.g. Newey (1990) and Robinson (1991) for

the cross-section case). But in the dynamic case, nonparametric estimation is di�cult. In

particular the fast enough consistency cannot generally be obtained in non Markovian settings

where the dimension of conditioning information is growing with the sample size T .17 In this

latter case, as summarized by Wooldridge (1994) \little is known about the e�ciency bounds

for the GMM estimator. Some work is available in the linear case; see Hansen (1985) and

Hansen, Heaton and Ogaki (1988)."18

In what follows we assume that the e�cient GMM estimator �̂T with optimal instruments is

obtained by solving the moment conditions:

1

T

TX
t=1

Dt(~�T )�
�1
t (~�T )f(yt; �̂T ) = 0; (3.7)

where ~�T is a �rst-stage consistent estimator such that
p
T (~�T � �0) = Op(1). This assumption

will be maintained throughout all this section.

iii) In a context of homoskedastic \errors" f(yt; �
0), t = 1; 2; ::T , Rilstone (1992) noticed that

an obvious alternative is the estimator that solves the moment conditions simultaneously over

both the residuals and the instruments, that is the solution of �:
TX
t=1

Dt(�)f(yt; �) = 0: (3.8)

Rilstone (1992) suggests to refer to �̂T as the \two-step" and �̂�T (solution of (3.8)) as the

\extremum" estimator.

The natural generalization to heteroskedastic errors of the extremum estimator suggested by

Rilstone (1992) is now �̂�T de�ned as solution of the following system of equations:

1

T

TX
t=1

Dt(�̂
�
T )�

�1
t (~�T )f(yt; �̂

�
T ) = 0: (3.9)

By identi�cation with (3.3), one observes that �̂�T is nothing but that our e�cient quadratic

M-estimator. Thus, by extending the equivalence argument of Rilstone (1992), one gets an

equivalence result between GMM and M-estimation which was never (to the best of our knowl-

edge) clearly stated until now:19

Theorem 3.1 If for conditional moment restricitions (3.1) conformable to (3.4), one con-

siders the e�cient GMM �̂T associated with optimal instruments (de�ned by (3.7)) and the

e�cient quadratic M-estimator �̂�T (de�ned by (3.9)), under standard regularity conditions (As-

sumptions 1,2,3,4, adapted to the setting of section 3), �̂T and �̂�T are consistent, asymptotically

normal and have the same asymptotic probability distribution.

17We recall that an ARCH model can be markovian in the opposite of the GARCH one.
18See also Kuersteiner (1997) and Guo-Phillips (1997).
19The proof is similar to the proof of Proposition 2.2.
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Note that a key di�erence between our setting and Rilstone's is that we assume by (3.4) that:

@f 0

@�
(yt; �) 2 It�1 and therefore Dt(�

0) =
@f 0

@�
(yt; �

0): Thus we are able to interpret Rilstone's

suggestion as a quadratic M-estimator. In other words, we give support, a posteriori, to

Rilstone's terminology of \extremum" estimator to refer to �̂�T .

3.2 Application to ARCH-type processes

The general equivalence result of section 3.1 can be applied to our ARCH-type setting de�ned

by Assumptions 1 to 4 by considering:20

f(yt; �) = [yt �mt(�); (yt �mt(�
0))2 � ht(�)]

0; (3.10)

or, given ~�T as a �rst-stage estimator of �0,

~f(yt; �) = [yt �mt(�); (yt �mt(~�T ))
2 � ht(�)]

0:

With such a convention, the \error term" ~f(yt; �) ful�lls the crucial assumption (3.4) which

allows us to apply the equivalence Theorem 3.1. Since we know from Chamberlain (1987) that

the GMM e�ciency bound is indeed the semiparametric e�ciency bound, we conclude that

the e�cient way to use the information provided by the parametric speci�cation mt(:) and ht(:)

of conditional mean and variance is the optimal quadratic M-estimation principle de�ned by

Theorem 2.1.

In other words, besides its intuitive appeal, the equivalence result is important in two respects.

The QMLE and its natural improvements in terms of quadratic M-estimation is considered

as a simpler method than GMM (see Bollerslev and Wooldridge (1992) as mentioned in the

introduction above and previous work by Crowder (1987) and Wefelmeyer (1996)). Also, the

GMM theory provides the benchmark for optimal use of available information in terms of

semiparametric e�ciency bounds.

Since GMM with optimal instruments as well as optimal quadratic M-estimators are gener-

ally unfeasible without preliminary adaptive estimation of higher order conditional moments,

one is often led to use parametric speci�cations of these moments. Typically, parametric spec-

i�cations of conditional skewness and kurtosis (see section 4) will allow one to compute both

optimal quadratic M-estimator and optimal instruments. But, as already explained, such an

approach is 
awed by a logical internal inconsistency since, if one knows the parametric spec-

i�cation M3t(�) and Kt(�) of conditional skewness and kurtosis, for inference one should use

the set of conditional moments restrictions associated to the following \augmented" f :

f(yt; �) = [yt�mt(�); (yt�mt(�
0))2�ht(�); (yt�mt(�

0))3�M3t(�)h
3=2
t (�); (yt�mt(�

0))4�3Kt(�)h
2
t (�)]

0:

(3.11)

With respect to (3.11), the optimal GMM associated with (3.10) will generally be ine�cient.

Note that the augmented f , as de�ned by (3.11) under the assumption (3.4) allows one to

apply our equivalence result. In other words, the new e�ciency bound associated with (3.11)

20Note that we can also consider the instrumental variable estimation based on E[(yt�mt(�); (yt�mt(�))
2�

ht(�))
0 j It�1] = 0: Given an instrument zt, the corresponding estimator is consistent and asymptotically

equivalent to the estimator based on E[(yt�mt(�); (yt�mt(�
0))2�ht(�))

0 j It�1] = 0 with the same instrument.
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(which is generally smaller than the one associated to (3.10)) can generate estimation strategies

conformable to our section 4 (see below). Furthermore, the e�ciency bound will be reached

by multivariate QMLE which would consider f(yt; �) as a gaussian vector.

Indeed, the main lesson of the above results is perhaps that, for a given number of moments

involved (order 1,2,3,...), multivariate QMLE and the associated battery of inference tools (see

Gouri�eroux, Monfort and Trognon (1984), Wooldridge (1990, 1991a, 1991b)) allow one to reach

the semiparametric e�ciency bound. Moreover, the reduction of information methodology

emphasized in section 4 (see below) will often simplify the feasibility of an \optimal" QMLE

by providing a principle of reduction of the set of admissible strategies. The search for such a

principle is not new in statistics (see unbiasedness, invariance, ... principles) and is fruitful if it

does not rule out the most natural strategies. This is clearly the case for interesting examples

that we have listed in section 4.

4 Information adjusted M-estimators and linear inter-

pretations
4.1 The semiparametric ARCH-type model

To obtain a feasible estimator of which asymptotic variance achieves the e�ciency bound of

Theorem 2.1, we generally require a nonparametric estimation of dynamic conditional third

and fourth moments. These issues will be discussed in more detail in section 4.2 below.

Engle and Gonz�alez-Rivera (1991) have introduced the so-called \semiparametric ARCH mod-

el" to simplify the nonparametric estimation. By assuming that the standardized errors

ut(�
0) = "(�0)=

q
ht(�0) are i.i.d, they are led to perform a nonparametric probability den-

sity estimation in a static setting which provides a semi-nonparametric inference technique

about �0. Our purpose in this section is to show that this semiparametric model allows us to

compute easily an optimal semiparametric estimator.

Surprisingly, Engle and Gonz�alez-Rivera (1991) stress the role of conditional skewness and

kurtosis but their i.i.d assumption imposes some restrictions on the whole probability dis-

tribution of the error process. Alternatively, we consider in this section an \independence"

assumption which is only de�ned through third and fourth moments:

Assumption 5: The standardized errors ut(�
0) have constant conditional skewness M3t(�

0)

and conditional kurtosis Kt(�
0).

In other words, M3t(�
0) and Kt(�

0) are assumed to coincide with unconditional skewness and

kurtosis coe�cients of the ut process:
M3(�

0) = E(u3t (�
0)) (4.1.a)

K(�0) =
1

3
E(u4t (�

0)) (4.1.b)

An advantage of Assumption 5 (with respect to the more restrictive Engle and Gonz�alez-

Rivera (1991) semiparametric setting) is that it is fully characterized by a set of conditional

moment restrictions:
E(u3t (�

0)�M3(�
0) j It�1) = 0 (4.2.a)

16



E(u4t (�
0)� 3K(�0) j It�1) = 0 (4.2.b)

which are testable by GMM overidenti�cation tests.

Moreover, let us assume that we have at our disposal a �rst-step consistent estimator ~�T of

�0 (it could be the QMLE). Thanks to Assumption 5, we are then able to compute consistent

estimators of skewness and kurtosis coe�cients of ut(�
0):

M̂3;T ( ~�T ) =
1

T

TX
t=1

u3t ( ~�T ) (4.3.a)

K̂T ( ~�T ) =
1

3T

TX
t=1

u4t (
~�T ) (4.3.b)

Note that under Assumption 5, M̂3;T ( ~�T ) (resp K̂T ( ~�T )) is a consistent estimator of both

M3t(�
0) and M3(�

0) (resp Kt(�
0) and K(�0)). Therefore, we obtain a feasible M-estimator of

�0 by considering �̂T
�
= �̂T (~�T ; !̂

�
T ; 
̂

�).

Theorem 4.1 Let us consider the estimator �̂�T de�ned by:

�̂�T = ArgMin
�

TX
t=1

â�T
"t(�)

2

ht(~�T )
+ b̂�T

("t(~�T )
2 � ht(�))

2

ht(~�T )2
+ 2ĉ�T

"t(�)("t(~�T )
2 � ht(�))

ht(~�T )
3

2

where: â�T = (3K̂T (~�T )� 1)� b̂�T ; b̂
�
T =

1

2

1

3K̂T (~�T )� 1� M̂3;T (~�T )2
; ĉ�T = �M̂3;T (~�T )� b̂�T ;

and where ~�T is a weakly consistent estimator of �0 such that
p
T (~�T � �0) = OP (1) (e.g. a

consistent asymptotically normal estimator). Then under Assumptions 1, 2, 3, 4 and 5, �̂�T
is a weakly consistent estimator of �0, asymptotically normal, of which asymptotic covariance

matrix coincides with the e�ciency bound �0 de�ned by Theorem 2.1.

We then have in a sense constructed an optimal M-estimator of �0. Of course, this optimality is

de�ned relatively to a given set of estimating restrictions, namely Assumption 1. In particular,

the informational content of Assumption 5 is not take into account (see section 3). However,

for normal errors ut, our estimator is asymptotically equivalent to �̂QT , which in this case is the

Maximum Likelihood Estimator (MLE). This is a direct consequence of Proposition 2.3,

Theorems 2.1 and 4.1.21 On the other hand, in the semiparametric setting proposed by Engle

and Gonz�alez-Rivera (1991) (and more generally in our framework de�ned by Assumptions

1 to 5), Theorem 2.1 provides the best choice of weights �t to take into account non-normal

skewness and kurtosis coe�cients. In particular, in this latter case, our estimator strictly

dominates (without a genuine additional computational di�culty) the usual QMLE based on

nominal normality. The QMLE appears to be a judicious way to estimate only if we are sure

that conditional skewness and kurtosis are respectively equal to 0 and 1.

21Proposition 2.3, Theorems 2.1 and 4.1 prove respectively that: �rst, �̂QT is asymptotically equivalent to

the estimator �̂T (~�T ; !
�; 
Q) of our class; second, 
Q is an optimal choice of 
 in the normal case; third,

�̂T (~�T ; !
�; 
Q) may be replaced by a feasible estimator without loss of e�ciency.
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4.2 Relaxing the assumption of semiparametric ARCH

Our semiparametric ARCH type setting has allowed us to consistently estimate (conditional)

skewness and kurtosis by their empirical counterparts. If we are not ready to maintain Assump-

tion 5, we know that the empirical skewness and kurtosis coe�cients (4.3) are only consistent

estimates of marginal skewness and kurtosis. Therefore, Theorem 4.1 does not provide in

general an e�cient estimator as characterized by Theorem 2.1. We propose in this section a

general methodology to construct \e�cient" estimators, where the e�ciency concept is possi-

bly weakened by restricting ourselves to more speci�c models and estimators. The basic tool

for doing this is the following remark which is a straightforward corollary of Proposition 2.2:

Let us consider a sequence of �-�elds Jt, t = 0; 1; 2; ::, such that, for any � 2 �:

mt(�); ht(�) 2 Jt�1 � It�1: (4.4)

Under assumptions 1, 2, 3, 4 and the notations of proposition 2.2, we consider the class CJ of

M-estimators �̂(~�T ; !T ; 
) such that:

�t(!) 2 Jt�1 (4.5)

for any ! 2 V and t = 1; 2; ::T:

Since mt(�) and ht(�) are assumed to be Jt�1 measurable for any �, the class CJ is large

and contains in particular every M-estimator (2.17) associated to constant weights at; bt; ct.

Therefore, by looking for a M-estimator optimal in the class CJ , we are in particular improving

the QMLE which corresponds (in terms of asymptotic equivalence) to the constant weights

(
1

2
;
1

4
; 0).

For such an estimator, the asymptotic covariance matrix A0�1


 B0

A

0�1


 admits a slightly modi�ed

expression deduced from Proposition 2.2 by replacing �t(�
0) by:

�J
t (�

0) = V ar[(
"t(�

0)
�t(�

0)
) j Jt�1] = E[�t(�

0) j Jt�1]:

This suggests the following generalization of Theorem 2.1:

Theorem 4.2 Under the assumptions of Theorem 2.1, a su�cient condition for an estimator

of the class CJ (according to (4.4)/(4.5)) to have the minimum asymptotic covariance matrix

in this class is that, for all t:

�t(!
�) = (�J

t (�
0))�1:

Notice that Theorem 4.2 is not identical to Theorem 2.1 since it can be applied to sub-� �elds

Jt�1 � It�1 = �(zt; y� ; z� ; � < t) without even assuming that (Jt); t = 0; 1; 2:: is an increasing

�ltration. If for instance we consider a linear regression model with ARCH disturbances:

mt(�) = a+ x0tb; ht(�) = ! +
qX

i=1

�i(yt�i �mt�i(�))
2; (4.6)

where xt = (x1t ; x
2
t ; ::x

H
t )

0 and xht , h = 1; ::H; is a given variable in It�1, we can consider:

Jt�1 = �(xt; yt�i; xt�i; i = 1; 2::; q):
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Thus, Theorem 4.2 suggests a large set of applications which were not previously considered in

the literature. The basic idea of these applications is that one could try to �nd a reduction Jt�1
of the information set such that conditional skewness and kurtosis with respect to this new

information set admit simpler forms which can be consistently estimated. Below, we consider

three types of \simpli�ed" conditional skewness and kurtosis.

Application 1: Constant conditional skewness and kurtosis.

Let us �rst imagine that a reduction Jt�1 of the information set It�1 (conformable to (4.4))

allows one to obtain constant conditional skewness and kurtosis:

M3(�
0) = E[ut(�

0)3 j Jt�1] = E[M3t(�
0) j Jt�1]; (4.7.a)

K(�0) =
1

3
E[ut(�

0)4 j Jt�1] = E[Kt(�
0) j Jt�1]: (4.7.b)

If this is the case, it is true in particular for the minimal information set:
Jt�1 = I�t�1 = �(mt(�); ht(�); � 2 �):

For notational simplicity, we will focus on this case. Therefore, the hypothesis (4.7) may be

tested by considering the moment conditions:

E[ut(�
0)3 �M3 j I�t�1] = 0 and E[ut(�

0)4 � 3K j I�t�1] = 0:

More precisely, one can perform an overidenti�cation Hansen's test on the following set of

conditional moment restrictions associated with the vector (�0;M3; K)0 of unknown parameters:8<
:
E[yt �mt(�) j I�t�1] = 0; E[(yt �mt(�))

2 � ht(�) j I�t�1] = 0;

E[ut(�
0)3 �M3 j I�t�1] = 0; E[ut(�

0)4 � 3K j I�t�1] = 0:

Let us notice that if we consider example (4.6), we are led to test orthogonality conditions like:

Cov[u3t (�
0); f(xt; x� ; y� ; � < t)] = 0 and Cov[u4t (�

0); f(xt; x� ; y� ; � < t)] = 0 (4.8)

for any real valued function f. Taking into account the parametric speci�cation (4.6), it is quite

natural to consider, as particular testing functions f, the polynomials of degree 1 and 2 with

respect to the variables components of (xt; xt�i; yt�i; i = 1; 2; ::q). In any case, if one trusts

assumption (4.7), one can use the following result:

Theorem 4.3 Under assumptions (4.7) with the assumptions of Theorem 2.1, the estimators

�̂�T de�ned by Theorem 4.1 is of minimum asymptotic covariance matrix in the minimal class

CI�.

In other words, thanks to a reduction CI� of the class of M-estimators we consider, assumption

(4.7) is a su�cient condition (much more general than the semiparametric ARCH setting) to

ensure that the M-estimator �̂�T computed from empirical skewness and kurtosis is optimal in

a second-best sense and particularly, more accurate than the QMLE.

Indeed, to ensure that �̂�T is better than the usual QMLE, it is su�cient to know that �̂�T is

optimal in the subclass C0 of CI� of M-estimators associated to constant weights: (at; bt; ct) =

(a; b; c). This optimality is ensured by a weaker assumption than (4.7) as shown by the follow-

ing:
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Proposition 4.1 If the following orthogonality conditions are ful�lled:

Cov[(
M3t(�

0)
Kt(�

0)
);

1

ht(�0)

@mt

@�
(�0)

@mt

@�0
(�0)] = 0; Cov[(

M3t(�
0)

Kt(�
0)

);
1

ht(�0)2
@ht
@�

(�0)
@ht
@�0

(�0)] = 0;

Cov[(
M3t(�

0)
Kt(�

0)
);

1

ht(�0)3=2
@mt

@�
(�0)

@ht
@�0

(�0)] = 0;

then the estimator �̂�T de�ned in Theorem 4.1 is of minimum asymptotic covariance matrix in

the class C0 of M-estimators de�ned by constant weights (a; b; c).

The orthogonality assumptions of proposition 4.1 are minimal in the sense that they are a

weakening of (4.7) which involves only the functions of Jt�1 = I�t�1 which do appear in the

variance calculations.

Application 2: \Linear models" of the conditional skewness and kurtosis.

It turns out that there are situations where, while the assumption (4.7) of constant condi-

tional skewness and kurtosis could not be maintained, one may trust a more general parametric

model (associated with a reduction Jt�1 of the information set):(
MJ

3t(�
0) = E[M3t(�

0) j Jt�1] =MC
3 (mt(�

0); ht(�
0); �)

KJ
t (�

0) = E[K3(�
0) j Jt�1] = KC(mt(�

0); ht(�
0); �)

(4.9)

where � is a vector of nuisance parameters and MC
3 (:) and K

C(:) are known functions.

An example of such a situation is provided by Drost and Nijman (1993) in the context of

temporal aggregation of a symmetric semiparametric ARCH(1) process. Indeed, one of the

weaknesses of the semiparametric GARCH framework considered in subsection 4.1 is its lack

of robustness with respect to temporal aggregation (see Drost and Nijman (1993) and Meddahi

and Renault (1996)). Thus it is important to be able to relax the assumption of semiparametric

GARCH if we are not sure of the relevant frequency of sampling (which should allow us to

maintain the semiparametric assumption). Following Drost and Nijman (1993), Example 3

page 918, let us consider the following semiparametric symmetric ARCH(1) process:(
yt =

q
ht(�0)ut; ht(�

0) =  0 + �0y2t�1;

ut i:i:d; E[ut] = 0; V ar(ut) = 1; E[u3t ] = 0:
(4.10)

If one now imagines that the sampling frequency is divided by 2, one observes y2t; t 2 Z, which
de�nes a reduced information �ltration:

I
(2)
2t = �(y2� ; � � t):

Due to this reduction of past information, we now have to rede�ne the conditional variance

process:

h
(2)
2t (�

0) = V ar[y2t j I(2)2t�2]:

The parametric form of h
(2)
2t (�

0) can be deduced from (4.10) by elementary algebra: h
(2)
2t =

E[h2t j I(2)2t�2]

with: h2t =  +�y22t�1 =  +�u22t�1( +�y
2
2t�2) =  +�( +�y22t�2)+�( +�y

2
2t�2)(u

2
2t�1�1):

Therefore: h
(2)
2t =  (1 + �) + �2y22t�2 (4.11)
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and
u
(2)
2t =

y2tq
h
(2)
2t

= u2t

vuut h2t

h(2)2t

= u2t
q
�2t + u22t�1(1� �2t) (4.12)

with �2t =
 

h
(2)
2t

: (4.13)

By a simple development of E[(u
(2)
2t )

4 j I(2)2t�2] from (4.11), one gets:

E[(u
(2)
2t )

4 j I(2)2t�2] = 3K[�22t(3K � 1)� 2�2t(3K � 1) + 3K] (4.14)

where K =
1

3
E[u4t j It�1] =

1

3
E[u4t ]:

In other words, while conditional kurtosis was constant with a given frequency, it is now time-

varying and stochastic (through the process �2t) when the sampling frequency is divided by 2.

On the other hand, the symmetry assumption is maintained:

E[(u
(2)
2t )

3 j I(2)2t�2] = 0:

This example suggests a class of models where, for a reduced information Jt, one has the

following relaxation of (4.7):

KJ
t (�

0) =
1

3
E[ut(�

0)4 j Jt�1] = �0 +
�1

ht(�0)
+

�2
(ht(�0))2

(4.15)

and, in this case MJ
3t(�

0) = 0.

Such a parametric form of conditional kurtosis has been suggested by temporal aggregation

arguments.22 Moreover, it corresponds to some empirical evidence already documented for

instance by Bossaerts, Hafner and Hardle (1995) who notice that while higher conditional

volatility is associated with large changes in exchange rate quotes, conditional kurtosis is

higher for small quote changes.

In any case, whatever the parametric model (4.9) we have in mind, it can be used to compute

an estimator asymptotically equivalent to the e�cient one in the class CJ (de�ned by Theorem

4.2). The procedure may be the following. First, compute standardized residuals ~ut(~�T )

associated with a �rst-stage consistent estimator ~�T . Then, compute a consistent estimator ~�T
of � from (4.9), for instance by minimizing the sum of squared deviations:

TX
t=1

[~u3t (
~�T )�M c

3(mt(~�T ); ht(~�T ); �)]
2 + [

1

3
~u4t (

~�T )�Kc(mt(~�T ); ht(~�T ); �)]
2:

For the example (4.15) we only have to perform linear OLS of 1
3
~u4t (

~�T ) with respect to 1;
1

ht(~�T )

and
1

(ht(~�T ))2
. Finally, use the adjusted conditional skewness M c

3(mt(~�T ); ht(~�T ); ~�) and kur-

tosis Kc(mt(~�T ); ht(~�T ); ~�) to compute a weighting matrix ~�t;T = [~�J
t;T (

~�T )]
�1. By Proposition

2.2, the estimator �̂T deduced from ~�T and the weighting matrices ~�t;T , t = 1; 2::; T , will be of

minimal asymptotic covariance matrix in the class CJ .
22See also Hansen (1994), DeJong, Drost and Werker (1996), El-Babsiri and Zakoian (1997), for examples of

heteroskewness and heterokurtosis models.
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Application 3: Nonparametric regression models of the conditional skewness and

kurtosis.

The two applications above always assume a fully speci�ed parametric model for conditional

skewness and kurtosis (with respect to a reduced �ltration J). In this respect, they su�er

from the usual drawback: In order to compute an \e�cient" M-estimator, we need additional

information which could theoretically be used for de�ning a better estimator (see section 3 for

some insights on this paradox). A way to avoid this problem is to look for weighting matrices

�t, t = 1; 2::; T , which are deduced from a nonparametric estimation of the conditional variance

�t(�
0). But for such a semiparametric strategy, the usual disclaimer applies: if the process is

not markovian in such a way that �t(�
0) depends on It�1 through an in�nite number of lagged

values y� ; � < t, the nonparametric estimation cannot be performed in general. Moreover,

non Markovian dynamics of conditional higher order moments is a common situation since, for

instance in a GARCH framework, dynamics (4.15) of conditional kurtosis are not markovian.

Of course, one may always imagine limiting a priori the number of lags taken into account in

the nonparametric estimation (see e.g. Masry and Tjostheim (1995)), but there is then a trade

o� between the misspeci�cation bias and the curse of dimensionality problem.

Thus a reduction of the information set may be very useful. Indeed, when �t(�
0) cannot

be consistently estimated, it may be the case that a reduction J of the information �ltration

provides a new covariance matrix �J
t (�

0) which depends only on a �nite number of given

functions. For instance with the minimal information set:

Jt�1 = I�t�1 = �(mt(�); ht(�); � 2 �)

we may hope that MJ
3t(�

0) and KJ
t (�

0) depend only on a �nite number of functions of lagged

values of (mt(�
0); ht(�

0)). By extending the main idea of Application 2, one may imagine for

instance that KJ
t (�

0) is an unknown function of the q variables ht�ij (�
0), ij 2 N�, j = 1; 2::; q.

In such a case, the estimation procedure described in Application 2 can be generalized by

replacing the second stage nonlinear regression by a nonparametric kernel estimation of the

regression function of ~u3t (
~�T ) and ~u4t (

~�T ) on relevant variables.

4.3 Multistage linear least squares procedures

In this section we show that all the estimators considered above (except the ones which in-

volve nonparametric kernel estimation) admit asymptotically equivalent versions which can be

computed by using only linear regression packages.

We have already stressed (see (2.10)) that in standard settings, a �rst-stage consistent

estimator ~�T can be obtained with nonlinear regression packages. Of course, with Newton

regression (see e.g. Davidson and MacKinnon (1993)) these nonlinear regressions can be re-

placed with linear ones. It remains to be explained how we are able to compute an e�cient

M-estimator (that is an estimator asymptotically equivalent to the e�cient one de�ned by The-

orem 4.1, Theorem 4.2 or Application 2) by using only linear tools. Indeed, this is a general

property of our quadratic M-estimators as it is stated in the following theorem:

Theorem 4.4 Consider, in the context of Assumptions 1, 2, 3, 4, a M-estimator �̂1T de�ned
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by:
�̂1T = ArgMin

�

TX
t=1

�0t(�; ~�T )�t;T (~�T )�t(�; ~�T )

where, for t = 1; 2:::; �t is a known function of class C2 on (int�)2 such that E[�t(�
0; �0) j

It�1] = 0. Then �̂1T is asymptotically equivalent to �̂2T de�ned by

�̂2T = ArgMin
�

TX
t=1

[�t(~�T ; ~�T ) +
@�t
@�0

(~�T ; ~�T )(� � ~�T )]
0�t;T (~�T )[�t(~�T ; ~�T ) +

@�t
@�0

(~�T ; ~�T )(� � ~�T )]

where
@�t
@�0

denotes the jacobian matrix of �t with respect to its �rst occurence.

This theorem implicitly assumes that �t veri�es the standard measurability, continuity and

di�erentiability conditions which ensure consistency and asymptotic normality of the associated

estimators. This is typically the case under Assumptions 1, 2, 3, 4, if:

�t(�; �) = ("t(�); "
2
t (�)� ht(�)):

The basic idea of Theorem 4.4, namely a Newton-based modi�cation of the initial objective

function to produce a two-step estimation method without loss of e�ciency is not new in

econometrics. From the seminal paper by Hartley (1961) and its application to dynamic

models by Hatanaka (1974), Trognon and Gouri�eroux (1990) have developed a general theory

(see also Pagan (1986)). Indeed, the proof of Theorem 4.4 shows that we are confronted with

a case where there is no e�ciency loss produced by a direct two-stage procedure and thus,

we do not need to build an \approximate objective function" as in Trognon and Gouri�eroux

(1990). By application of the same methodology, all the procedures described above can be

performed by linear regressions, including the preliminary estimation of conditional skewness

and kurtosis functions.

4.4 Monte Carlo evidence

Until now we have only presented theoretical asymptotic properties of our various estimators.

In the following, we present a Monte Carlo study which compare the asymptotic variances is

several cases. Thus we consider a large sample size (1000). We want to give a 
avor of the

importance of taking into account conditional skewness and kurtosis. A complete discussion of

the small-sample is done in Alami, Meddahi and Renault (1998) (AMR hereafter). We consider

the following DGP:
yt = c+ �yt�1 + "t (4.16.a)

ht = ! + �"2t�1 (4.16.b)

� = (c; �; !; �)0 with �0 = (1; 0:7; 0:5; 0:5)0, with three possible probability distributions for

the i.i.d standardized residuals ut =
"tp
ht
: standard Normal, standardized Student T(5) and

standardized Gamma �(1).
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For each experiment, we have performed 400 replications. The main goal of these experiments

is to compare, for the three probability distributions above, three natural estimators:23

1) Two-stage OLS, that is OLS on (4.16.a) to compute residuals "̂t and OLS on the approxi-

mated regression equation associated with (4.16.b): "̂2t ' ! + �"̂2t�1 + �t:

2) QMLE.

3) Our e�cient M-estimator from Theorem 4.1.

Since our e�cient M-estimator is a two-stage one (based on a �rst stage consistent estimator
~�T ), the �nite sample properties might depend heavily on the choice of ~�T . Therefore, we

consider below four versions of our e�cient M-estimator:

� Version C1: ~�T = OLS,

� Version C2: ~�T = QMLE,

� Version C3: \Iterated OLS",

� Version C4: \Iterated QMLE",

where \Iterated OLS" (resp QMLE) means that ~�
(5)
T is de�ned from the following algorithm:

~�
(1)
T is the \version C1" (resp C2) e�cient estimator, and for p = 2; 3; 4; 5; ~�

(p)
T is the e�cient

estimator computed with ~�
(p�1)
T as a �rst-stage estimator ~�T . For these small-scale experiments,

we have simpli�ed this theoretical procedure by using, at each stage, only one step of the

numerical routine of optimization.24

The results of our Monte Carlo experiments are presented in tables 1, 2, 3 which correspond

respectively to cases 1, 2 and 3. We provide the mean over our 400 replications, and between

brackets, the Monte Carlo standard error.25

The Monte Carlo results lead to four preliminary conclusions:

i) The ARCH parameters (! and �) are very badly estimated by OLS. This in-

e�ciency is more and more striking when one goes from Table 1 to Table 3. While the het-

eroskedasticity parameter is underestimated by OLS by almost 20 percent in the gaussian case,

it is underestimated by almost 50 percent in the gamma case, that is when both leptokurtosis

and skewness are present.

ii) Despite the ine�ciency of OLS, it can be used as a �rst-stage estimator for

e�cient estimation without a dramatic loss of e�ciency with respect to the use

of QMLE as a �rst-stage estimator. In other words, C1 (resp C3) is not very di�erent

from C2 (resp C4). In particular, the di�erence is negligible in the iterated case: C3 and C4

23A large variety of estimators should be considered. For example, OLS could be iterated to perform QGLS.
In any case, we know that the asymptotic accuracy of QGLS is worse than QMLE in case 1 (for the estimation
of c and �, see Engle (1982)). Thus QGLS is not studied here, to focus on our main issue of improving QMLE.

24We provide in AMR (1998) additional experiments to show that such a simpli�cation has almost no impact

on the value of ~�
(5)
T .

25Mean and Monte carlo standard errors are obtained without any procedure of variance reduction. See
AMR (1998) for a comparison with theoretical standard errors.
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provide almost identical results (large sample size). However, we will now focus on C2 and C4

(e�cient estimator with initial estimator QML) that we want to compare to b, that is QMLE.

iii) As far as one is concerned by the estimation of the �rst-order dynamics (c end

�), the use of an e�cient procedure (C2 and C4) provides important e�ciency

gains for non-gaussian distributions, particularly when skewness is present. The

most striking result is that the e�cient estimator of � is almost twice more accurate than QML

in the case of gamma errors. On the other hand, iteration does not appear very fruitful (C4

almost identical to C2) due to the large sample size.

iv) The e�cient estimator of the heteroskedasticity parameters � is more accurate

than QMLE. The e�ciency gain reached almost 50 percent in case of gamma errors. However,

one has to be cautious when interpreting this conclusion for two reasons. First, it is important

to use the iterated version of the e�cient estimator, since, otherwise, � could be severely

underestimated. Second, the e�ciency gain in the case of a symmetric distribution (Student

case) is only due (see the expression of the score) to the �nite sample gain in estimation of c

and �.

In any case, we conclude that, for accurate estimation of both �rst-order and second-order

dynamics (� and �), the e�cient estimation method provides a genuine e�ciency gain in the

case of skewed innovations. As already noticed by Engle and Gonz�alez-Rivera (1991), fat

tails without skewness matter less. On the other hand, there is no loss implied by e�cient

estimation with respect to QML, at least for sample sizes 1000 with an iterated version of the

estimator. Moreover, since one can use OLS as a �rst-stage estimator, e�cient estimation does

not imply dramatic numerical complexity with respect to QML. In other words, we conclude

that for estimation, QML is strictly dominated by e�cient procedures in all respects.

5 Conclusion

In this paper, we consider the estimation of time series models de�ned by their conditional

mean and variance. We introduce a large class of quadratic M-estimators and characterize

the optimal estimator which involves conditional skewness and kurtosis. We show that this

optimal estimator is more e�cient than the QMLE under non-normality. Furthermore, it is as

e�cient as the optimal GMM as well as the bivariate QMLE based on the dependent variable

and its square. We also extend this study to higher order moments.

We apply our methodology to the so-called semiparametric GARCH models of Engle and

Gonz�alez-Rivera (1991). A monte Carlo analysis con�rms the relevance of our approach, in

particular the importance of skewness. The recent work by Guo and Phillips (1997) also stress

the skewness e�ect. We also present several cases where we can apply our methodology while

the semiparametric setting (standardized residuals are i.i.d) is violated. A Monte Carlo analysis

in such cases is considered in AMR (1998). Moreover, such cases, typically heteroskewness and

heterokurtosis, introduce speci�c problems in testing for heteroskedasticity as detailed in AMR

(1998).
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Proof of Theorem 4.1: �̂�T is conformable to the large family of estimators de�ned by
Proposition 2.2 with
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Hence, by Proposition 2.1 �̂�T is consistent and by Proposition 2.2, it asymptotically normal
with asymptotic covariance matrix equal to (A�0)�1B�0(A�0)�1 with
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To complete the proof, it is su�cient to show that is asymptotic covariance matrix is equal
to A0�1

de�ned by Theorem 2.1. We have (by (2.14) and (2.18)): ��t (�
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0): Hence
A0� = A0 and B0� = B0 and then (A0�)�1B0�(A0�)�1 = (A0)�1.2

Proof of Theorem 4.2 Let us denote by �̂JT the estimator conformable to the weighting matrix
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De�ne a weighting matrix �t(!) 2 Jt�1 and �̂T the corresponding estimator. Its asymptotic
covariance matrix is (A0
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By the same argument as for B0�J , we can prove that:

B0
J = lim

T!1

1

T

TX
t=1

E

8>>>><
>>>>:
"
@mt

@�
(�0);

@ht
@�

(�0)

#
�t(!)�

J
t (�

0)�t(!)

2
66664
@mt

@�0
(�0)

@ht
@�0

(�0)

3
77775

9>>>>=
>>>>;
:

With these formulas, it is clear that by the same argument than in the proof of Theorem 2.1, we
can prove that (A0
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�1B0
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�1 � (A0�J)�1B0�J(A0�J)�1 is positive, that is �̂JT is of minimum

asymptotic covariance matrix in the class CJ.2
Proof of Theorem 4.3: This a direct application of the Theorem 4.2 with CJ = CI�. In this
case:
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The corresponding estimator has an asymptotic covariance matrix equal to (A0
C)
�1B0

C(A
0
C)
�1

with
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With this formulas, and by an argument similar to the proof of Theorem 2.1 (or Theorem 4.3),
we complete the proof.2

Proof of Theorem 4.4: The estimators �̂1T and �̂2T are respectively de�ned by:
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We conclude that:
p
T (�̂2T � �̂1T ) = oP (1), that is �̂

2
T and �̂1T are asymptotically equivalent.2
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Table 1: Gaussian errors
a

(OLS)
b

(QMLE)
C1

(Initial OLS)
C2

(Initial QMLE)
C3

(Iterated OLS)
C4

(Iterated QMLE)

c
1:022
(0:129)

1:015
(0:077)

1:014
(0:078)

1:015
(0:076)

1:014
(0:076)

1:014
(0:076)

�
0:694
(0:038)

0:696
(0:022)

0:696
(0:023)

0:696
(0:022)

0:696
(0:22)

0:696
(0:022)

!
0:576
(0:090)

0:502
(0:035)

0:506
(0:037)

0:502
(0:035)

0:502
(0:035)

0:501
(0:035)

�
0:416
(0:106)

0:496
(0:063)

0:484
(0:068)

0:488
(0:067)

0:496
(0:063)

0:496
(0:063)

Table 2: Student errors
a

(OLS)
b

(QMLE)
C1

(Initial OLS)
C2

(Initial QMLE)
C3

(Iterated OLS)
C4

(Iterated QMLE)

c
1:021
(0:157)

1:016
(0:096)

1:014
(0:092)

1:016
(0:086)

1:015
(0:086)

1:014
(0:086)

�
0:694
(0:046)

0:695
(0:027)

0:696
(0:026)

0:695
(0:025)

0:696
(0:025)

0:696
(0:025)

!
0:654
(0:183)

0:505
(0:059)

0:522
(0:104)

0:509
(0:060)

0:513
(0:100)

0:507
(0:060)

�
0:329
(0:124)

0:498
(0:153)

0:466
(0:127)

0:470
(0:121)

0:482
(0:121)

0:492
(0:139)

Table 3: Gamma errors
a

(OLS)
b

(QMLE)
C1

(Initial OLS)
C2

(Initial QMLE)
C3

(Iterated OLS)
C4

(Iterated QMLE)

c
1:056
(0:145)

1:011
(0:106)

1:013
(0:075)

1:011
(0:066)

1:001
(0:066)

1:001
(0:065)

�
0:682
(0:046)

0:696
(0:031)

0:696
(0:022)

0:696
(0:019)

0:697
(0:019)

0:697
(0:018)

!
0:711
(0:443)

0:499
(0:060)

0:509
(0:062)

0:501
(0:052)

0:503
(0:052)

0:502
(0:052)

�
0:279
(0:120)

0:502
(0:145)

0:480
(0:130)

0:474
(0:108)

0:494
(0:103)

0:495
(0:102)
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